Do you want to publish a course? Click here

A Search for Moderate-Redshift Survivors from the Population of Luminous Compact Passive Galaxies at High Redshift

132   0   0.0 ( 0 )
 Added by Alan Stockton
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

From a search of a ~ 2400 square degree region covered by both the SDSS and UKIDSS databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser-guide-star adaptive-optics imaging. For 4 of the 5 galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find 2 galaxies that are consistent with having formed > 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.



rate research

Read More

135 - Alan Stockton , Hsin-Yi Shih , 2009
From a search of a portion of the sky covered by the SDSS and UKIDSS databases, we have located 2 galaxies at z~0.5 that have properties similar to those of the luminous passive compact galaxies found at z~2.5. From Keck moderate-resolution spectroscopy and laser-guided adaptive-optics imaging of these galaxies, we can begin to put together a more detailed picture of what their high-redshift counterparts might be like. Spectral-synthesis models that fit the u to K photometry also seem to give good fits to the spectral features. From these models, we estimate masses in the range of 3-4 10^11 M_sun for both galaxies. Under the assumption that these are spheroidal galaxies, our velocity dispersions give estimated masses about a factor of 3 smaller. However, our high-resolution imaging data indicate that these galaxies are not normal spheroids, and the interpretation of the kinematic data depends critically on the actual morphologies and the nature of the stellar orbits. While recent suggestions that the population of high-redshift compact galaxies is present locally as the inner regions of local massive elliptical galaxies are quite plausible, the peak mass surface densities of the two galaxies we discuss here appear to be up to a factor of 10 higher than those of the highest density local ellipticals, assuming that our photometric masses are roughly correct. It thus seems possible that some dynamical puffing-up of the high-redshift galaxies might still be required in this scenario.
We present the stellar velocity dispersion measurements for 5 Luminous Compact Galaxies (LCGs) at z=0.5-0.7. These galaxies are vigorously forming stars with average SFR $sim$ 40 M$_{odot}$/yr. We find that their velocity dispersions range from $sim137 rm{km/s}$ to $260 rm{km/s}$, while their stellar masses range between $4times 10^{9}$ and $10^{11}$ M$_{odot}$. If these LCGs evolve passively after this major burst of star formation, their masses and velocity dispersions, as well as their evolved colours and luminosities are most consistent with the values characteristic of early-type spiral galaxies today.
We use GOODS and CANDELS images to identify progenitors of massive (log M > 10 Msun) compact early-type galaxies (ETGs) at z~1.6. Since merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z~3 based on their mass, SFR and central stellar density and find that these account for a large fraction of, and possibly all, compact ETGs at z~1.6. We find that the average far-UV SED of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration, and consistent with more evolved (aging) star-formation. This is in line with other evidence that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended halos surrounding the compact core, both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas-rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the HST images, with their stellar mass assembling in-situ, and that they have not experienced any major merging until the epoch of observations at z~1.6.
409 - Matthew Hayes 2012
Laporte et al. (2011) reported a very high redshift galaxy candidate: a lensed J-band dropout (A2667-J1). J1 has a photometric redshift of z=9.6-12, the probability density function for which permits no low or intermediate z solution. We here report new spectroscopic observations of this galaxy with VLT/XShooter, which show clear [OIII]5007AA, Ly-alpha, H-alpha, and H-beta emission and place the galaxy firmly at z=2.082. The oxygen lines contribute only ~25% to the H-band flux, and do not significantly affect the dropout selection of J1. After correcting the broadband fluxes for line emission, we identify two roughly equally plausible natures for A2667-J1: either it is young heavily reddened starburst, or a maximally old system with a very pronounced 4000AA break, upon which a minor secondary burst of star formation is superimposed. Fits show that to make a 3 sigma detection of this object in the B-band (V-band), imaging of depth AB=30.2 (29.5) would be required - despite the relatively bright NIR magnitude, we would need optical data of equivalent depth to the Hubble Ultra Deep Field to rule out the mid-z solution on purely photometric grounds. Assuming that this stellar population can be scaled to the NIR magnitudes of recent HST/WFC3 IR-selected galaxies, we conclude that infeasibly deep optical data AB~32 would be required for the same level of security. There is a population of galaxies at z~2 with continuum colours alone that mimic those of our z=7-12 candidates.
Population III galaxies are predicted to exist at high redshifts and may be rendered sufficiently bright for detection with current telescopes when gravitationally lensed by a foreground galaxy cluster. Population III galaxies that exhibit strong Lya emission should furthermore be identifiable from broadband photometry because of their unusual colors. Here, we report on a search for such objects at z > 6 in the imaging data from the Cluster Lensing And Supernova survey with Hubble (CLASH), covering 25 galaxy clusters in 16 filters. Our selection algorithm returns five singly-imaged candidates with Lya-like color signatures, for which ground-based spectroscopy with current 8-10 m class telescopes should be able to test the predicted strength of the Lya line. None of these five objects have been included in previous CLASH compilations of high-redshift galaxy candidates. However, when large grids of spectral synthesis models are applied to the study of these objects, we find that only two of these candidates are significantly better fitted by Population III models than by more mundane, low-metallicity stellar populations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا