Do you want to publish a course? Click here

Direct Detection of Galactic Halo Dark Matter

106   0   0.0 ( 0 )
 Added by Ben R. Oppenheimer
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Milky Way Galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this ``dark matter may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the Galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the Galaxys spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2% of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of Galactic halo dark matter.



rate research

Read More

244 - Marc Kamionkowski 2008
We study the effects of substructure in the Galactic halo on direct detection of dark matter, on searches for energetic neutrinos from WIMP annihilation in the Sun and Earth, and on the enhancement in the WIMP annihilation rate in the halo. Our central result is a probability distribution function (PDF) P(rho) for the local dark-matter density. This distribution must be taken into account when using null dark-matter searches to constrain the properties of dark-matter candidates. We take two approaches to calculating the PDF. The first is an analytic model that capitalizes on the scale-invariant nature of the structure--formation hierarchy in order to address early stages in the hierarchy (very small scales; high densities). Our second approach uses simulation-inspired results to describe the PDF that arises from lower-density larger-scale substructures which formed in more recent stages in the merger hierarchy. The distributions are skew positive, and they peak at densities lower than the mean density. The local dark-matter density may be as small as 1/10th the canonical value of ~ 0.4 GeV/cm^3, but it is probably no less than 0.2 GeV/cm^3.
We reply to the criticism of Gibson & Flynn and of Graff regarding Direct detection of galactic halo dark matter by Oppenheimer et al. (2001) (Science, Vol. 292, p. 698), which reported on the discovery of a significant population of halo white dwarfs found in our South Galactic Cap survey. None of their arguments against our claims withstand close scrutiny.
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the role of dark-matter astrophysics, to search for signatures of the QCD axion or axion like particles. We illustrate how in the event of a detection the likelihood framework may be used to extract measures of the local dark matter phase-space distribution, accounting for effects such as annual modulation and gravitational focusing, which is the perturbation to the dark matter phase-space distribution by the gravitational field of the Sun. Moreover, we show how potential dark matter substructure, such as cold dark matter streams or a thick dark disk, could impact the signal. For example, we find that when the bulk dark matter halo is detected at 5$sigma$ global significance, the unique time-dependent features imprinted by the dark matter component of the Sagittarius stream, even if only a few percent of the local dark matter density, may be detectable at $sim$2$sigma$ significance. A co-rotating dark disk, with lag speed $sim$50 km$/$s, that is $sim$20$%$ of the local DM density could dominate the signal, while colder but as-of-yet unknown substructure may be even more important. Our likelihood formalism, and the results derived with it, are generally applicable to any time-series based approach to axion direct detection.
Sub-GeV mass dark matter particles whose collisions with nuclei would not deposit sufficient energy to be detected, could instead be revealed through their interaction with electrons. Analyses of data from direct detection experiments usually require assuming a local dark matter halo velocity distribution. In the halo-independent analysis method, properties of this distribution are instead inferred from direct dark matter detection data, which allows then to compare different data without making any assumption on the uncertain local dark halo. This method has so far been developed for and applied to dark matter scattering off nuclei. Here we demonstrate how this analysis can be applied to scattering off electrons.
327 - Yao-Yuan Mao 2013
Several direct detection experiments, including recently CDMS-II, have reported signals consistent with 5 to 10 GeV dark matter (DM) that appear to be in tension with null results from XENON and LUX experiments; these indicate a careful review of the theoretical basis, including the galactic DM velocity distribution function (VDF). We establish a VDF parameter space from DM-only cosmological simulations and illustrate that seemingly contradictory experimental results can be made consistent within this parameter space. Future experimental limits should be reported after they are marginalized over a range of VDF parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا