Do you want to publish a course? Click here

Discovery of a High-Energy Gamma-Ray-Emitting Persistent Microquasar

100   0   0.0 ( 0 )
 Added by Marc Ribo
 Publication date 2001
  fields Physics
and research's language is English
 Authors J.M. Paredes




Ask ChatGPT about the research

Microquasars are stellar x-ray binaries that behave as a scaled down version of extragalactic quasars. The star LS 5039 is a new microquasar system with apparent persistent ejection of relativistic plasma at a 3 kiloparsec distance from the sun. It may also be associated with a gamma-ray source discovered by the Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON-Gamma Ray Observatory satellite. Before the discovery of LS 5039, merely a handful of microquasars had been identified in the Galaxy, and none of them was detected in high-energy gamma-rays.

rate research

Read More

315 - Paola Grandi 2015
We present supporting evidence for the first association of a Fermi source, 3FGLJ1330.0-3818, with the FR0 radio galaxy Tol1326-379. FR0s represent the majority of the local radio loud AGN population but their nature is still unclear. They share the same properties of FRIs from the point of view of the nuclear and host properties, but they show a large deficit of extended radio emission. Here we show that FR0s can emit photons at very high energies. Tol1326-379 has a GeV luminosity of $L_{>1~{rm GeV}} sim 2times10^{42}$ erg s$^{-1}$, typical of FRIs, but with a steeper $gamma$-ray spectrum ($Gamma=2.78pm 0.14$). This could be related to the intrinsic jet properties but also to a different viewing angle.
The X-ray spectra of X-ray binaries are dominated by emission of either soft or hard X-rays which defines their soft and hard spectral states. Cygnus X-3 is amongst the list of X-ray binaries that show quite complex behavior, with various distinct spectral states. Because of its softness and intrinsic low flux above typically 50 keV, very little is known about the hard X/soft gamma-ray (100-1000 keV) emission in Cygnus X-3. Using the whole INTEGRAL data base, we aim to explore the 3-1000 keV spectra of Cygnus X-3. This allows to probe this region with the highest sensitivity ever, and search for the potential signature of a high-energy non-thermal component as sometimes seen in other sources. Our work is based on state classification carried out in previous studies with data from the Rossi X-Ray Timing Explorer. We extend this classification to the whole INTEGRAL data set and perform a long-term state-resolved spectral analysis. Six stacked spectra were obtained using 16 years of data from JEM-X, ISGRI, and SPI. We extract stacked images in three different energy bands, and detect the source up to 200 keV. In the hardest states, our phenomenological approach reveals the presence of an component > 50 keV in addition to the component usually interpreted as thermal Comptonization. We apply a more physical model of hybrid thermal/nonthermal corona to characterize this component and compare our results with those of previous studies. Our modeling indicates a more efficient acceleration of electrons in states where major ejections are observed. We find a dependence of the photon index of the power law as a function of the strong orbital modulation of the source in the Flaring InterMediate (FIM) state. This dependence could be due to a higher absorption when Cygnus X-3 is behind its companion. However, the uncertainties on the density column prevent us from drawing conclusions.
61 - F. Aharonian , et al 2007
The complex Monoceros Loop SNR/Rosette Nebula region contains several potential sources of very-high-energy (VHE) gamma-ray emission and two as yet unidentified high-energy EGRET sources. Sensitive VHE observations are required to probe acceleration processes in this region. The H.E.S.S. telescope array has been used to search for very high-energy gamma-ray sources in this region. CO data from the NANTEN telescope were used to map the molecular clouds in the region, which could act as target material for gamma-ray production via hadronic interactions. We announce the discovery of a new gamma-ray source, HESS J0632+058, located close to the rim of the Monoceros SNR. This source is unresolved by H.E.S.S. and has no clear counterpart at other wavelengths but is possibly associated with the weak X-ray source 1RXS J063258.3+054857, the Be-star MWC 148 and/or the lower energy gamma-ray source 3EG J0634+0521. No evidence for an associated molecular cloud was found in the CO data.
Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them are known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.
Context. It has become evident that one-zone synchrotron self-Compton models are not always adequate for very-high-energy (VHE) gamma-ray emitting blazars. While two-component models are performing better, they are difficult to constrain due to the large number of free parameters. Aims. In this work, we make a first attempt to take into account the observational constraints from Very Long Baseline Interferometry (VLBI) data, long-term light curves (radio, optical, and X-rays) and optical polarisation to limit the parameter space for a two-component model and test if it can still reproduce the observed spectral energy distribution (SED) of the blazars. Methods. We selected five TeV BL Lac objects based on the availability of VHE gamma-ray and optical polarisation data. We collected constraints for the jet parameters from VLBI observations. We evaluated the contributions of the two components to the optical flux by means of decomposition of long-term radio and optical light curves as well as modeling of the optical polarisation variability of the objects. We selected eight epochs for these five objects, based on the variability observed at VHE gamma rays, for which we constructed the SEDs that we then modeled with a two-component model. Results. We found parameter sets which can reproduce the broadband SED of the sources in the framework of two-component models considering all available observational constraints from VLBI observations. Moreover, the constraints obtained from the long-term behavior of the sources in the lower energy bands could be used to determine the region where the emission in each band originates. Finally, we attempted to use optical polarisation data to shed new light on the behavior of the two components in the optical band. Our observationally constrained two zone model allows explanation of the entire SED from radio to VHE with two co-located emission regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا