No Arabic abstract
We present an X-ray study of the irregular dwarf galaxy Holmberg II based on deep ROSAT PSPC observations. Holmberg II is one of the most famous examples of an irregular dwarf galaxy with a disrupted interstellar medium (ISM): expanding HI holes are present across the entire face of the galaxy. Huge HI cavities of kpc extent are found even outside current starforming regions. We search for faint X-ray sources (stellar end points as well as hot gas), touching the limits of the ROSAT PSPC detector and link the newly detected X-ray sources to features detected in other wavelengths. Using an X-ray hardness ratio color-color diagram we show that it is possible to differentiate between thermal plasma and power-law X-ray spectra, which helps to track down the physical nature of the individual sources.
We present Swift UV/Optical Telescope (UVOT) imaging of the galaxies M81 and Holmberg IX. We combine UVOT imaging in three near ultraviolet (NUV) filters (uvw2: 1928 {AA}, uvm2: 2246 {AA}, and uvw1: 2600 {AA}) with ground based optical imaging from the Sloan Digital Sky Survey to constrain the stellar populations of both galaxies. Our analysis consists of three different methods. First we use the NUV imaging to identify UV star forming knots and then perform SED modeling on the UV/optical photometry of these sources. Second, we measure surface brightness profiles of the disk of M81 in the NUV and optical. Last we use SED fitting of individual pixels to map the properties of the two galaxies. In agreement with earlier studies we find evidence for a burst in star formation in both galaxies starting ~200 Myr ago coincident with the suggested time of an M81-M82 interaction. In line with theories of its origin as a tidal dwarf we find that the luminosity weighted age of Holmberg IX is a few hundred million years. Both galaxies are best fit by a Milky Way dust extinction law with a prominent 2175 {AA} bump. In addition, we describe a stacked median filter technique for modeling the diffuse background light within a galaxy, and a Markov chain method for cleaning segment maps generated by SExtractor.
Star-formation in the outer Galaxy is thought to be different from the inner Galaxy, as it is subject to different environmental parameters such as metallicity, interstellar radiation field, or mass surface density that all change with Galactocentric radius. We therefore aimed at getting a more detailed view on the structure of the outer Galaxy, determining physical properties for a large number of star forming clumps and understanding star-formation outside the Solar circle. We use pointed $^{12}$CO(2-1) observations conducted with the APEX telescope to determine the velocity components towards 830 dust clumps identified from 250 $mu$m Herschel/Hi-GAL SPIRE emission maps in the outer Galaxy between $225deg<ell<260deg$. We determined kinematic distances from the velocity components, in order to analyze the structure of the outer Galaxy and to estimate physical properties such as dust temperatures, bolometric luminosities, clump masses, and H2 column densities for 611 clumps. We find the CO clouds to be strongly correlated with the highest column density parts of the Hi emission distribution, spanning a web of bridges, spurs and blobs of star forming regions between the larger complexes, unveiling the complex three-dimensional structure of the outer Galaxy in unprecedented detail. Using the physical properties of the clumps, we find an upper limit of 6% (40 sources) to be able to form high-mass stars. This is supported by the fact that only 2 methanol Class II masers or 34 known or candidate Hii regions are found in the whole survey area, indicating an even lower fraction to be able to form high-mass stars in the outer Galaxy. We fail to find any correlation of the physical parameters of the identified (potential) star forming regions with the expanding supershell, indicating that although the shell organizes the interstellar material into clumps, their properties are unaffected.
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for example associated with the onset of jets and outflows. We will summarize the recent observational and theoretical progress on this topic since the last maser symposium: the IAU Symposium 242 in Alice Springs.
We present initial results of an ongoing search for interferometric calibrators at submillimeter (sub-mm) wavelengths with the Submillimeter Array (SMA). Powerful radio galaxies are commonly used as calibrators at centimeter and millimeter wavelengths, but many are not strong enough to serve as calibrators at sub-mm wavelengths because of their rapidly declining flux densities toward shorter wavelengths. The inability to find a calibrator close to the target source may limit or even prevent us from imaging many interesting sources at sub-mm wavelengths. Here, we investigate whether high-mass protostellar objects and ultracompact HII regions can serve as useful calibrators for the SMA. The dust emission associated with these objects makes them among the brightest sub-mm sources in the sky. Our observations at 0.85 mm (345 GHz) with an angular resolution of ~3 reveal that although a large fraction of the dust emission originates from an extended ``halo component, a compact unresolved component often remains that when sufficiently strong may serve as a useful calibrator. These observations also provide a first glimpse at the small-scale distribution of dust around ultracompact HII regions and high-mass protostellar objects at sub-mm wavelengths. We discuss the origin of the core-halo structure seen in many sources, and conclude with suggestions for future searches for calibrators with the SMA.
We present the results of a search for companions to young brown dwarfs in the Taurus and Chamaeleon I star forming regions (1/2-3 Myr). We have used WFPC2 on board HST to obtain F791W and F850LP images of 47 members of these regions that have spectral types of M6-L0 (0.01-0.1 Msun). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. We have applied PSF subtraction to the primaries and have searched the resulting images for objects that have colors and magnitudes that are indicative of young low-mass objects. Through this process, we have identified promising candidate companions to 2MASS J04414489+2301513 (rho=0.105/15 AU), 2MASS J04221332+1934392 (rho=0.05/7 AU), and ISO 217 (rho=0.03/5 AU). We reported the discovery of the first candidate in a previous study, showing that it has a similar proper motion as the primary through a comparison of astrometry measured with WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon, and Upper Sco (10 Myr), we measure binary fractions of 14/93 = 0.15+0.05/-0.03 for M4-M6 (0.1-0.3 Msun) and 4/108 = 0.04+0.03/-0.01 for >M6 (<0.1 Msun) at separations of >10 AU. Given the youth and low density of these three regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.