No Arabic abstract
With the Infrared Space Observatory, we conducted 3x3-pixel imaging photometry of twelve luminosity class III stars, which were previously presumed to have dust particles around them, at far infrared wavelengths (60 and 90 um). Eleven out of twelve targets show a peak of excess (above photosphere) far infrared emission at the location of the star, implying that the dust particles are truly associated with stars. To estimate the size of the excess emission source, the flux ratio of center to boundary pixels of the 3x3 array was examined. The radius of the dust emission is found to be ~3000 to ~10000 AU for a thin shell distribution, and ~5000 to ~25000 AU for a uniform distribution. We consider three models for the origin of the dust: disintegration of comets, sporadic dust ejection from the star, and emission from nearby interstellar cirrus. The data seem to rule out the first model (as far as the Kuiper--belt like particles are assumed to be large blackbody grains), but do not enable us to choose between the other two models.
We present results of the analysis of a sample of 22 stars of spectral types from O7 to B5 and luminosity classes I-V for which Spitzer/IRS spectra are available. The IRS spectra of these stars are examined for signs of excess infrared (IR) emission by comparison with stellar atmospheric spectra. We find that the spectra of half of the studied stars are dominated by excess emission in the far-IR, including all six super- and bright giants. In order to examine the origin of the far-IR excess, we supplement the Spitzer data with optical high-resolution echelle spectroscopy ($lambda/Delta lambda sim 10^5$), near-IR high-contrast coronagraphic imaging taken with the SPHERE instrument at VLT with a spatial resolution of 0.05, and WISE and Herschel photometry. In the optical region, we detect various absorption and emission lines (H$alpha$, CIII, and NIII) irrespective of the far-IR excess. Pfund($alpha$) and Humphrey($alpha$) lines are observed at the same time as the far-IR excess. These lines are stronger in stars with far-IR excess than in stars without excess. A scattered-light disk in the central r < 2.5 region of the far-IR excess stars HD149404, HD151804, and HD154368 can be excluded from H band imaging down to a 1$sigma$ contrast of $F(r)/F_{*} sim 10^{-6}$. The far-IR excess is fit either by a free-free component from ionized gas as for the winds of hot stars or a large (1pc) circumstellar dust shell. The putative dust envelopes required to explain the excess have a visual extinction as low as a few hundred $mu$-mag.
We have cross-correlated the Sloan Digital Sky Survey (SDSS) second data release spectroscopic galaxy sample with the IRAS faint-source catalogue (FSC). Optical emission line ratios are used to classify the galaxies with reliable IRAS 60 and 100 microns detections into AGN and normal star-forming galaxies. We then create subsamples of normal galaxies and AGN that are very closely matched in terms of key physical properties such as stellar mass, redshift, size, concentration and mean stellar age (as measured by absorption line indicators in the SDSS spectra). We then quantify whether there are systematic differences between the IR luminosities of the galaxies and the AGN in the matched subsamples. We find that the AGN exhibit a significant excess in far-IR emission relative to the star-forming galaxies in our sample. The excesses at 60 and 100 microns are 0.21 +/- 0.03 dex and 0.12 +/- 0.035 dex in log[L(60)/M*] and log[L(100)/M*], respectively. We then discuss whether the far-IR excess is produced by radiation from the active nucleus that is absorbed by dust or alternatively, by an extra population of young stars that is not detectable at optical wavelengths.
We describe results from a survey for J=3-2 12CO emission from visible stars with an infrared excess. The line is clearly detected in 21 objects, with molecular gas (>10^-3 Jupiter masses) common in targets with infrared excesses >0.01 (>56% of objects). Such high excesses indicate the presence of a disc of opening angle >12 degrees; within this, the optically thick disc prevents CO photodissociation. Two or three stars with associated CO have an excess <0.01, implying a disc opening angle <1 degree. Most line profiles are double-peaked or relatively broad. Model fits, assuming a Keplerian disc, indicate outer radii, R_out, of ~20-300 au. As many as 5 discs have outer radii smaller than the Solar System (50 au), and a further 4 have gas at radii <20 au. R_out is independent of the stellar spectral type (from K through to B9), but is correlated with total dust mass. R_out appears to decrease with time: discs around stars of age 3-7 Myr have a mean radius of ~210 au, whereas discs of age 7-20 Myr are a factor of 3 smaller. The only bona fide debris disc with detected CO is HD9672; this has a double peaked line profile and is the most compact gas disc observed, with a modelled radius 17 au). A fit to HD141569 suggests the gas lies in two rings of radii 90 and 250 au, similar to the scattered light structure. In both AB Aur and HD163296 the sizes of the molecular and dust scattering discs are also similar, suggesting that the gas and small dust grains are co-located.
Far-ultraviolet (FUV) and far-infrared (FIR) luminosity functions (LFs) of galaxies show a strong evolution from $z = 0$ to $z = 1$, but the FIR LF evolves much stronger than the FUV one. The FUV is dominantly radiated from newly formed short-lived OB stars, while the FIR is emitted by dust grains heated by the FUV radiation field. It is known that dust is always associated with star formation activity. Thus, both FUV and FIR are tightly related to the star formation in galaxies, but in a very complicated manner. In order to disentangle the relation between FUV and FIR emissions, we estimate the UV-IR bivariate LF (BLF) of galaxies with {sl GALEX} and {sl AKARI} All-Sky Survey datasets. Recently we invented a new mathematical method to construct the BLF with given marginals and prescribed correlation coefficient. This method makes use of a tool from mathematical statistics, so called copula. The copula enables us to construct a bivariate distribution function from given marginal distributions with prescribed correlation and/or dependence structure. With this new formulation and FUV and FIR univariate LFs, we analyze various FUV and FIR data with {sl GALEX}, {sl Spitzer}, and {sl AKARI} to estimate the UV-IR BLF. The obtained BLFs naturally explain the nonlinear complicated relation between FUV and FIR emission from star-forming galaxies. Though the faint-end of the BLF was not well constrained for high-$z$ samples, the estimated linear correlation coefficient $rho$ was found to be very high, and is remarkably stable with redshifts (from 0.95 at $z = 0$ to 0.85 at $z = 1.0$). This implies the evolution of the UV-IR BLF is mainly due to the different evolution of the univariate LFs, and may not be controlled by the dependence structure.
The description of the statistical properties of dust emission gives important constraints on the physics of the interstellar medium but it is also a useful way to estimate the contamination of diffuse interstellar emission in the cases where it is considered a nuisance. The main goals of this analysis of the power spectrum and non-Gaussian properties of 100 micron dust emission are 1) to estimate the power spectrum of interstellar matter density in three dimensions, 2) to review and extend previous estimates of the cirrus noise due to dust emission and 3) to produce simulated dust emission maps that reproduce the observed statistical properties. The main results are the following. 1) The cirrus noise level as a function of brightness has been previously overestimated. It is found to be proportional to <I> instead of <I>^1.5, where <I> is the local average brightness at 100 micron. This scaling is in accordance with the fact that the brightness fluctuation level observed at a given angular scale on the sky is the sum of fluctuations of increasing amplitude with distance on the line of sight. 2) The spectral index of dust emission at scales between 5 arcmin and 12.5 degrees is <gamma>=-2.9 on average but shows significant variations over the sky. Bright regions have systematically steeper power spectra than diffuse regions. 3) The skewness and kurtosis of brightness fluctuations is high, indicative of strong non-Gaussianity. 4) Based on our characterization of the 100 micron power spectrum we provide a prescription of the cirrus confusion noise as a function of wavelength and scale. 5) Finally we present a method based on a modification of Gaussian random fields to produce simulations of dust maps which reproduce the power spectrum and non-Gaussian properties of interstellar dust emission.