Do you want to publish a course? Click here

Far-Ultraviolet and Far-Infrared Bivariate Luminosity Function of Galaxies: Complex Relation between Stellar and Dust Emission

198   0   0.0 ( 0 )
 Added by Tsutomu Takeuchi T.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Far-ultraviolet (FUV) and far-infrared (FIR) luminosity functions (LFs) of galaxies show a strong evolution from $z = 0$ to $z = 1$, but the FIR LF evolves much stronger than the FUV one. The FUV is dominantly radiated from newly formed short-lived OB stars, while the FIR is emitted by dust grains heated by the FUV radiation field. It is known that dust is always associated with star formation activity. Thus, both FUV and FIR are tightly related to the star formation in galaxies, but in a very complicated manner. In order to disentangle the relation between FUV and FIR emissions, we estimate the UV-IR bivariate LF (BLF) of galaxies with {sl GALEX} and {sl AKARI} All-Sky Survey datasets. Recently we invented a new mathematical method to construct the BLF with given marginals and prescribed correlation coefficient. This method makes use of a tool from mathematical statistics, so called copula. The copula enables us to construct a bivariate distribution function from given marginal distributions with prescribed correlation and/or dependence structure. With this new formulation and FUV and FIR univariate LFs, we analyze various FUV and FIR data with {sl GALEX}, {sl Spitzer}, and {sl AKARI} to estimate the UV-IR BLF. The obtained BLFs naturally explain the nonlinear complicated relation between FUV and FIR emission from star-forming galaxies. Though the faint-end of the BLF was not well constrained for high-$z$ samples, the estimated linear correlation coefficient $rho$ was found to be very high, and is remarkably stable with redshifts (from 0.95 at $z = 0$ to 0.85 at $z = 1.0$). This implies the evolution of the UV-IR BLF is mainly due to the different evolution of the univariate LFs, and may not be controlled by the dependence structure.



rate research

Read More

426 - S. Heinis , V.Buat , M. Bethermin 2012
We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at zsim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the HerMES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at zsim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
143 - Elysse N. Voyer 2011
The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star-formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and -South fields. These data were obtained with the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts sample a FUV AB magnitude range from 21-29 and cover a total area of 15.9 arcmin^2, ~4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV GALEX counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter merger trees by Somerville et al. (2011). We show that the number counts are ~35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than previous HST FUV studies. The integrated light from field galaxies is found to contribute between 65.9 +/-8 - 82.6 +/-12 photons/s/cm^2/sr/angstrom to the FUV extragalactic background. These measurements set a lower limit for the total FUV background light.
The description of the statistical properties of dust emission gives important constraints on the physics of the interstellar medium but it is also a useful way to estimate the contamination of diffuse interstellar emission in the cases where it is considered a nuisance. The main goals of this analysis of the power spectrum and non-Gaussian properties of 100 micron dust emission are 1) to estimate the power spectrum of interstellar matter density in three dimensions, 2) to review and extend previous estimates of the cirrus noise due to dust emission and 3) to produce simulated dust emission maps that reproduce the observed statistical properties. The main results are the following. 1) The cirrus noise level as a function of brightness has been previously overestimated. It is found to be proportional to <I> instead of <I>^1.5, where <I> is the local average brightness at 100 micron. This scaling is in accordance with the fact that the brightness fluctuation level observed at a given angular scale on the sky is the sum of fluctuations of increasing amplitude with distance on the line of sight. 2) The spectral index of dust emission at scales between 5 arcmin and 12.5 degrees is <gamma>=-2.9 on average but shows significant variations over the sky. Bright regions have systematically steeper power spectra than diffuse regions. 3) The skewness and kurtosis of brightness fluctuations is high, indicative of strong non-Gaussianity. 4) Based on our characterization of the 100 micron power spectrum we provide a prescription of the cirrus confusion noise as a function of wavelength and scale. 5) Finally we present a method based on a modification of Gaussian random fields to produce simulations of dust maps which reproduce the power spectrum and non-Gaussian properties of interstellar dust emission.
We investigate the star forming activity of a sample of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme red color in the optical and IR regime, $(i - [22])_{rm AB} > 7.0$. Combining an IR-bright DOG sample with the flux at 22 $mu$m $>$ 3.8 mJy discovered by Toba & Nagao (2016) with IRAS faint source catalog version 2 and AKARI far-IR (FIR) all-sky survey bright source catalog version 2, we selected 109 DOGs with FIR data. For a subsample of 7 IR-bright DOGs with spectroscopic redshift ($0.07 < z < 1.0$) that was obtained from literature, we estimated their IR luminosity, star formation rate (SFR), and stellar mass based on the spectral energy distribution fitting. We found that (i) WISE 22 $mu$m luminosity at observed frame is a good indicator of IR luminosity for IR-bright DOGs and (ii) the contribution of active galactic nucleus (AGN) to IR luminosity increases with IR luminosity. By comparing the stellar mass and SFR relation for our DOG sample and literature, we found that most of IR-bright DOGs lie significantly above the main sequence of star-forming galaxies at similar redshift, indicating that the majority of IRAS- and/or AKARI-detected IR-bright DOGs are starburst galaxies.
181 - Brian Siana 2009
We report the results of a Spitzer infrared study of the Cosmic Eye, a strongly lensed, L*_UV Lyman Break Galaxy (LBG) at z=3.074. We obtained Spitzer IRS spectroscopy as well as MIPS 24 and 70 micron photometry. The Eye is detected with high significance at both 24 and 70 microns and, when including a flux limit at 3.5 mm, we estimate an infrared luminosity of L_IR = 8.3 (+4.7-4.4) x10^11 L_sun assuming a magnification of 28+-3. This L_IR is eight times lower than that predicted from the rest-frame UV properties assuming a Calzetti reddening law. This has also been observed in other young LBGs, and indicates that the dust reddening law may be steeper in these galaxies. The mid-IR spectrum shows strong PAH emission at 6.2 and 7.7 microns, with equivalent widths near the maximum values observed in star-forming galaxies at any redshift. The L_PAH-to-L_IR ratio lies close to the relation measured in local starbursts. Therefore, L_PAH or L_MIR may be used to estimate L_IR and thus, star formation rate, of LBGs, whose fluxes at longer wavelengths are typically below current confusion limits. We also report the highest redshift detection of the 3.3 micron PAH emission feature. The PAH ratio, L_6.2/L_3.3=5.1+- 2.7, and the PAH-to-L_IR ratio, L_3.3/L_IR = 8.5 +- 4.7 x10^-4, are both in agreement with measurements in local starbursts and ULIRGs, suggesting that this line may serve as a good proxy for L_PAH or L_IR at z > 3 with the James Webb Space Telescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا