Do you want to publish a course? Click here

Stellar Population analysis from Broad-Band Colours

91   0   0.0 ( 0 )
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed an analytical method to investigate the stellar populations in a galaxy using the broad-band colours. The method enables us to determine the relative contribution, spatial distribution and age for different stellar populations and gives a hint about the dust distribution in a galaxy. We apply this method to the irregular galaxy NGC 3077, using CCD images in U, B, V and R filters.



rate research

Read More

188 - Janine Pforr 2013
(Abridged) In a recent work we explored the dependence of galaxy stellar population properties derived from broad-band spectral energy distribution fitting on the fitting parameters, e.g. SFHs, age grid, metallicity, IMF, dust reddening, reddening law, filter setup and wavelength coverage. In this paper we consider also redshift as a free parameter in the fit and study whether one can obtain reasonable estimates of photometric redshifts and stellar population properties at once. We use mock star-forming as well as passive galaxies placed at various redshifts (0.5 to 3) as test particles. Mock star-forming galaxies are extracted from a semi-analytical galaxy formation model. We show that for high-z star-forming galaxies photometric redshifts, stellar masses and reddening can be determined simultaneously when using a broad wavelength coverage and a wide template setup in the fit. Masses are similarly well recovered (median ~ 0.2 dex) as at fixed redshift. For old galaxies with little recent star formation masses are better recovered than in the fixed redshift case, such that the median recovered stellar mass improves by up to 0.3 dex whereas the uncertainty in the redshift accuracy increases by only ~ 0.05. However, a failure in redshift recovery also means a failure in mass recovery. As at fixed redshift mismatches in SFH and degeneracies between age, dust and now also redshift cause underestimated ages, overestimated reddening and underestimated masses. Stellar masses are best determined at low redshift without reddening in the fit (median underestimation ~ 0.1 dex for similarly well recovered redshifts). Not surprisingly, the recovery of properties is substantially better for passive galaxies. In all cases, the recovery of physical parameters is crucially dependent on the wavelength coverage adopted in the fitting. Scaling relations for the transformation of stellar masses are provided.
534 - Paula Coelho 2011
We obtained stellar ages and metallicities via spectrum fitting for a sample of 575 bulges with spectra available from the Sloan Digital Sky Survey. The structural properties of the galaxies have been studied in detail in Gadotti (2009b) and the sample contains 251 bulges in galaxies with bars. Using the whole sample, where galaxy stellar mass distributions for barred and unbarred galaxies are similar, we find that bulges in barred and unbarred galaxies occupy similar loci in the age vs. metallicity plane. However, the distribution of bulge ages in barred galaxies shows an excess of populations younger than ~ 4 Gyr, when compared to bulges in unbarred galaxies. Kolmogorov-Smirnov statistics confirm that the age distributions are different with a significance of 99.94%. If we select sub-samples for which the bulge stellar mass distributions are similar for barred and unbarred galaxies, this excess vanishes for galaxies with bulge mass log M < 10.1 M_Sun while for more massive galaxies we find a bimodal bulge age distribution for barred galaxies only, corresponding to two normal distributions with mean ages of 10.4 and 4.7 Gyr. We also find twice as much AGN among barred galaxies, as compared to unbarred galaxies, for low-mass bulges. By combining a large sample of high quality data with sophisticated image and spectral analysis, we are able to find evidence that the presence of bars affect the mean stellar ages of bulges. This lends strong support to models in which bars trigger star formation activity in the centers of galaxies.
The spatial distributions of the mean luminosity-weighted stellar age, metallicity, and alpha/Fe ratio along both photometric axes of two nearby elliptical galaxies have been obtained using Lick index measurements on long slit spectra in order to reconstruct the star formation history in their kinematically distinct subsystems. Lick indexes were compared with those of single-aged stellar population (SSP) models. A population synthesis method was also applied in order to help disentangling the age-metallicity degeneracy. The stars characteristics are associated with their kinematics: they are older and alpha-enhanced in the not rotating bulge of NGC 1052 and counter rotating core of NGC 7796, while they show a strong spread of alpha/Fe and age along the rotating disk of NGC 1052 and an outwards radial decreasing of them outside the core of NGC 7796.
Gamma-ray binaries (GBs) have been object of intense studies in the last decade. From an observational perspective, GBs are phenomenologically similar to most X-ray binary systems in terms of their broad-band emission across the entire electromagnetic spectrum, being segregated from this source population by showing a maximum of their spectral energy distribution in the gamma-ray band, either at high-energies (HE: 100 MeV - 100 GeV) or very-high energies (VHE: above 100 GeV). From a theoretical perspective, the broad-band emission from GBs is a unique case in which particle acceleration and emission/absorption mechanisms can be tested against periodically changing conditions of their immediate surroundings. In this proceedings we examine some of the key observational results of the multi-wavelength emission from GBs. We discuss the correlated/contemporaneous emission observed in several of these systems, from radio to gamma-rays, by considering a single underlying particle-emitting population and the properties of the nearby photon, matter and magnetic ambient fields.
Upcoming large-area narrow band photometric surveys, such as J-PAS, will enable us to observe a large number of galaxies simultaneously and efficiently. However, it will be challenging to analyse the spatially-resolved stellar populations of galaxies from such big data to investigate galaxy formation and evolutionary history. We have applied a convolutional neural network (CNN) technique, which is known to be computationally inexpensive once it is trained, to retrieve the metallicity and age from J-PAS-like narrow band images. The CNN was trained using mock J-PAS data created from the CALIFA IFU survey and the age and metallicity at each data point, which are derived using full spectral fitting to the CALIFA spectra. We demonstrate that our CNN model can consistently recover age and metallicity from each J-PAS-like spectral energy distribution. The radial gradients of the age and metallicity for galaxies are also recovered accurately, irrespective of their morphology. However, it is demonstrated that the diversity of the dataset used to train the neural networks has a dramatic effect on the recovery of galactic stellar population parameters. Hence, future applications of CNNs to constrain stellar populations will rely on the availability of quality spectroscopic data from samples covering a wide range of population parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا