No Arabic abstract
Observations of the rho Ophiuchi star forming region with VLT ANTU and ISAAC under 0.35 seeing conditions reveal two bipolar reflection nebulosities intersected by central dust lanes. The sources (OphE-MM3 and CRBR 2422.8-3423) can be identified as spatially resolved circumstellar disks viewed close to edge-on, similar to edge-on disk sources discovered previously in the Taurus and Orion star forming regions. Millimeter continuum fluxes yield disk masses of the order of 0.01 Mo, i.e. about the mass deemed necessary for the minimum solar nebula. Follow-up spectroscopic observations with SUBARU and CISCO show that both disk sources exhibit featureless continua in the K-band. No accretion or outflow signatures were detected. The slightly less edge-on orientation of the disk around CRBR 2422.8-3423 compared to HH 30 leads to a dramatic difference in the flux seen in the ISOCAM 4.5 mu to 12 mu bands. The observations confirm theoretical predictions on the effect of disk geometry and inclination angle on the spectral energy distribution of young stellar objects with circumstellar disks.
We report the discovery in NIR with SofI at the NTT of a resolved circumstellar dust disk around a 2MASS source at the periphery of the rho Ophiuchi dark cloud. We present follow-up observations in J, H, and Ks-band obtained with ISAAC at the VLT, under 0.4-seeing conditions, which unveil a dark dust lane oriented East-West between two characteristic northern and southern reflection nebulae. This new circumstellar dust disk has a radius of 2.15 (300 AU at 140 pc), and a width of 1.2 (170 AU at 140 pc). Thanks to its location at the periphery of the dense cores, it suffers small foreground visual extinction (Av=2.1pm2.6 mag). Although this disk is seen close to edge-on, the two reflection nebulae display very different colors. We introduce a new NIR data visualization called ``Pixel NIR Color Mapping, which allows to visualize directly the NIR colors of the nebula pixels. Thanks to this method we identify a ridge, 0.3 (40 AU at 140 pc) to the north of the dark lane and parallel to it, which displays a NIR color excess. This ridge corresponds to an unusual increase of brightness from J to Ks, which is also visible in the NTT observation obtained 130 days before the VLT one. We also find that the northern nebula shows ~3 mag more extinction than the southern nebula. We compute axisymmetric disk models to reproduce the VLT scattered light images and the spectral energy distribution from optical to NIR. Our best model, with a disk inclination i=86pm1 deg, correctly reproduces the extension of the southern reflection nebula, but it is not able to reproduce either the observed NIR color excess in the northern nebula or the extinction difference between the two reflection nebulae. We discuss the possible origin of the peculiar asymmetrical NIR color properties of this object.
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the Rho Ophiuchi A+B binary system. Rho Ophiiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from Rho Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS + All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect 3 debris disk objects and 22 disk-less / Class III young stars. We show that these stars have ages in $5-10$ Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of $ge5times10^{44}$ ergs has been injected into the surrounding medium during the past $5$ Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.
Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O2, and water, H2O. Contrary to expectation, the space missions SWAS and Odin found only very small amounts of water vapour and essentially no O2 in the dense star-forming interstellar medium. Only toward rho Oph A did Odin detect a weak line of O2 at 119 GHz in a beam size of 10 arcmin. A larger telescope aperture such as that of the Herschel Space Observatory is required to resolve the O2 emission and to pinpoint its origin. We use the Heterodyne Instrument for the Far Infrared aboard Herschel to obtain high resolution O2 spectra toward selected positions in rho Oph A. These data are analysed using standard techniques for O2 excitation and compared to recent PDR-like chemical cloud models. The 487.2GHz line was clearly detected toward all three observed positions in rho Oph A. In addition, an oversampled map of the 773.8GHz transition revealed the detection of the line in only half of the observed area. Based on their ratios, the temperature of the O2 emitting gas appears to vary quite substantially, with warm gas (> 50 K) adjacent to a much colder region, where temperatures are below 30 K. The exploited models predict O2 column densities to be sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these model, the observationally determined O2 column densities seem not to depend strongly on the derived gas temperatures, but fall into the range N(O2) = (3 to >6)e15/cm^2. Beam averaged O2 abundances are about 5e-8 relative to H2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz of about 4 - 5 arcmin, encompassing the entire rho Oph A core.
We present new multiwavelength submillimeter continuum measurements of the circumstellar dust around 48 young stars in the $rho$ Ophiuchus dark clouds. Supplemented with previous 1.3 mm observations of an additional 99 objects from the literature, the statistical distributions of disk masses and submillimeter colors are calculated and compared to those in the Taurus-Auriga region. These basic submillimeter properties of young stellar objects in both environments are shown to be essentially identical. As with their Taurus counterparts, the $rho$ Oph circumstellar dust properties are shown to evolve along an empirical evolution sequence based on the infrared spectral energy distribution. The combined $rho$ Oph and Taurus Class II samples (173 sources) are used to set benchmark values for basic outer disk characteristics: M_disk ~ 0.005 solar masses, M_disk/M_star ~ 1%, and $alpha$ ~ 2 (where $F_{ u} propto u^{alpha}$ between 350 microns and 1.3 mm). The precision of these numbers are addressed in the context of substantial solid particle growth in the earliest stages of the planet formation process. There is some circumstantial evidence that disk masses inferred from submillimeter emission may be under-estimated by up to an order of magnitude.
There is strong evidence that the planets in the solar system evolved from a disk-shaped solar nebula ~4.56 Gyr ago. By studying young stars in various evolutionary stages, one aims at tracing back the early history of the solar system, in particular the timescales for disk dissipation and for the formation of planetary systems. We used the VLT & ISAAC, and ESAs Infrared Space Observatory & ISOCAM to study the circumstellar environment of young low-mass stars.