Do you want to publish a course? Click here

The optical reflector system for the CANGAROO-II imaging atmospheric Cherenkov telescope

94   0   0.0 ( 0 )
 Added by Akiko Kawachi
 Publication date 2000
  fields Physics
and research's language is English
 Authors A. Kawachi




Ask ChatGPT about the research

A new imaging atmospheric Cherenkov telescope (CANGAROO-II) with a light-weight reflector has been constructed. Light, robust, and durable mirror facets of containing CFRP (Carbon Fiber Reinforced Plastic) laminates were developed for the telescope. The attitude of each facet can be adjusted by stepping motors. In this paper, we describe the design, manufacturing, alignment procedure, and the performance of the CANGAROO-II optical reflector system.



rate research

Read More

100 - S.Kabuki , K.Tsuchiya , K.Okumura 2002
A Cherenkov imaging camera for the CANGAROO-III experiment has been developed for observations of gamma-ray induced air-showers at energies from 10$^{11}$ to 10$^{14}$ eV. The camera consists of 427 pixels, arranged in a hexagonal shape at 0.17$^circ$ intervals, each of which is a 3/4-inch diameter photomultiplier module with a Winston-cone--shaped light guide. The camera was designed to have a large dynamic range of signal linearity, a wider field of view, and an improvement in photon collection efficiency compared with the CANGAROO-II camera. The camera, and a number of the calibration experiments made to test its performance, are described in detail in this paper.
145 - T. Bretz 2008
The MAGIC telescope is an imaging atmospheric Cherenkov telescope, designed to observe very high energy gamma-rays while achieving a low energy threshold. One of the key science goals is fast follow-up of the enigmatic and short lived gamma-ray bursts. The drive system for the telescope has to meet two basic demands: (1) During normal observations, the 72-ton telescope has to be positioned accurately, and has to track a given sky position with high precision at a typical rotational speed in the order of one revolution per day. (2) For successfully observing GRB prompt emission and afterglows, it has to be powerful enough to position to an arbitrary point on the sky within a few ten seconds and commence normal tracking immediately thereafter. To meet these requirements, the implementation and realization of the drive system relies strongly on standard industry components to ensure robustness and reliability. In this paper, we describe the mechanical setup, the drive control and the calibration of the pointing, as well as present measurements of the accuracy of the system. We show that the drive system is mechanically able to operate the motors with an accuracy even better than the feedback values from the axes. In the context of future projects, envisaging telescope arrays comprising about 100 individual instruments, the robustness and scalability of the concept is emphasized.
The data acquisition system for the new CANGAROO-II 7m telescope is described.
Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are aligned using stars imaged onto the closed lid of the PMT camera, viewed by a CCD camera. The alignment procedure works reliably and includes the automatic analysis of CCD images and control of the facet alignment actuators. On-axis, 80% of the reflected light is contained in a circle of less than 1 mrad diameter. The spot widens with increasing angle to the telescope axis. In accordance with simulations, the spot size has roughly doubled at an angle of 1.4 degr. from the axis. The expected variation of spot size with elevation due to deformations of the support structure is visible, but is completely non-critical over the usual working range. Overall, the optical quality of the telescope exceeds the specifications.
We have reanalyzed data from observations of PSR B1706-44, SN 1006, and the Vela pulsar region made with the CANGAROO 3.8 m imaging atmospheric Cherenkov telescope between 1993 and 1998 in response to the results reported for these sources by the H.E.S.S. collaboration. In our reanalysis, in which gamma-ray selection criteria have been determined exclusively using gamma-ray simulations and OFF-source data as background samples, no significant TeV gamma-ray signals have been detected from compact regions around PSR B1706-44 or within the northeast rim of SN 1006. We discuss reasons why the original analyses gave the source detections. The reanalysis did result in a TeV gamma-ray signal from the Vela pulsar region at the 4.5 sigma level using 1993, 1994, and 1995 data. The excess was located at the same position, 0.13 deg. to the southeast of the Vela pulsar, as that reported in the original analysis. We have investigated the effect of the acceptance distribution in the field of view of the 3.8 m telescope, which rapidly decreases toward the edge of the field of the camera, on the detected gamma-ray morphology. The expected excess distribution for the 3.8 m telescope has been obtained by reweighting the distribution of HESS J0835-455 measured by H.E.S.S. with the acceptance of the 3.8 m telescope. The result is morphologically comparable to the CANGAROO excess distribution, although the profile of the acceptance-reweighted H.E.S.S. distribution is more diffuse than that of CANGAROO. The integral gamma-ray flux from HESS J0835-455 has been estimated for the same region as defined by H.E.S.S. from the 1993-1995 data of CANGAROO to be F(> 4.0 +/- 1.6 TeV) = (3.28 +/- 0.92) x 10^{-12} photons cm^{-2} s^{-1}, which is statistically consistent with the integral flux obtained by H.E.S.S.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا