Do you want to publish a course? Click here

RXTE Studies of Long-Term X-ray Spectral Variations in 4U 1820-30

88   0   0.0 ( 0 )
 Added by Peter F. Bloser
 Publication date 2000
  fields Physics
and research's language is English
 Authors P. F. Bloser




Ask ChatGPT about the research

We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll source X-ray burster (XRB) located in the globular cluster NGC 6624. It is known to have an 11 minute binary period and a ~176 day modulation in its 2--12 keV flux. Observations were made with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study flux-related spectral changes. There are clear correlations between our fitted spectral parameters and both the broad-band (2--50 keV) flux and the position in the color-color diagram, as described by the parameter S_a introduced by Mendez et al. (1999). In addition, we find a strong correlation between the position in the color-color diagram and the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further support to the notion that evidence for the last stable orbit in the accretion disk of 4U 1820-30 has been observed. For a model consisting of Comptonization of cool photons by hot electrons plus an additional blackbody component, we report an abrupt change in the spectral parameters at the same accretion rate at which the kHz QPOs disappear. For a model consisting of a multicolor disk blackbody plus a cut-off power law, we find that the inner disk radius reaches a minimum at the same accretion rate at which the kHz QPO frequency saturates, as expected if the disk reaches the last stable orbit. Both models face theoretical and observational problems when interpreted physically for this system.



rate research

Read More

We report on 10 years of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 March until 2006 February: the RMS phase residual for a spin-down model which includes nu, nudot, and nuddot is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occured between 1998 and 2000, but is not required by the existing timing data. The pulse profile has been evolving since 2000. In particular, the dip of emission between its two peaks got shallower between 2002 and 2006, as if the profile were evolving back to its pre-2000 morphology, following an earlier event, which possibly also included the glitch suggested by the timing data. These profile variations are seen in the 2-4 keV band but not in 6-8 keV. We also detect a slow increase in the pulsed flux between 2002 May and 2004 December, such that it has risen by 36+/-3% over 2.6 years in the 2-10 keV band. The pulsed flux variability and the narrow-band pulse profile changes present interesting challenges to aspects of the magnetar model.
As part of a large-scale search for coherent pulsations from LMXBs in the RXTE archive, we have completed a detailed series of searches for coherent pulsations of 4U 1820-30 -- an ultracompact LMXB with a binary period of 11.4 min, located in the globular cluster NGC6624. The short binary period implies any coherent signal would be highly accelerated, so we used phase modulation searches, orbital-parameter-fitting coherent searches, and standard acceleration searches to give significant sensitivity to millisecond pulsations. We searched, in four energy bands and at a range of luminosities, a total of 34 archival RXTE observations, 32 of which had on-source integration times longer than 10 ks, and some of which were made consecutively which allowed us to combine them. We found no pulsations. Using our phase modulation search technique, which we ran on all 34 observations, we have been able to place the first stringent (95% confidence) pulsed fraction limits of <~0.8% for all realistic spin frequencies (i.e. <~2kHz) and likely companion masses (0.02Msun <= M_c <= 0.3Msun). Using our orbital-parameter-fitting coherent search, which we ran on only 11 selected observations, we have placed a pulsed fraction limit of <~0.3% for spin frequencies <~1.25kHz and companion masses M_ <= 0.106Msun. By contrast, all five LMXBs known to emit coherent pulsations have intrinsic pulsed fractions in the range 3% to 7% when pulsations are observed. Hence, our searches rule out pulsations with significantly lower pulsed fractions than those already observed.
The ultracompact low-mass X-ray binary 4U 1820-30 situated in the globular cluster NGC 6624 has an orbital period of only $approx$11.4 min which likely implies a white dwarf companion. The observed X-ray bursts demonstrate a photospheric radius expansion phase and therefore are believed to reach the Eddington luminosity allowing us to estimate the mass and the radius of the neutron star (NS) in this binary. Here we re-analyse all Rossi X-ray Timing Explorer observations of the system and confirm that almost all the bursts took place during the hard persistent state of the system. This allows us to use the recently developed direct cooling tail method to estimate the NS mass and radius. However, because of the very short, about a second, duration of the cooling tail phases that can be described by the theoretical atmosphere models, the obtained constraints on the NS radius are not very strict. Assuming a pure helium NS atmosphere we found that the NS radius is in the range 10-12 km, if the NS mass is below 1.7 $M_odot$, and in a wider range of 8-12 km for a higher 1.7-2.0 $M_odot$ NS mass. The method also constrains the distance to the system to be 6.5$pm$0.5 kpc, which is consistent with the distance to the cluster. For the solar composition atmosphere, the NS parameters are in strong contradiction with the generally accepted range of possible NS masses and radii.
We report on 10 yr of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 until February 2006: the RMS phase residual for a spin-down model which includes nu, nudot, and nuddot is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occured between 1998 and 2000, but it is not required by the existing data. We also report that the sources pulse profile has been evolving in the past 6 years, such that the dip of emission between its two peaks has been getting shallower since 2000, almost as if the profile is recovering to its pre-2000 morphology, in which there was no clear distinction between the peaks. These profile variations are seen in the 2-4 keV band but not in 6-8 keV. Finally, we present the pulsed flux time series of the source in 2-10 keV. There is evidence of a slow but steady increase in the sources pulsed flux since 2000. The pulsed flux variability and the narrow-band pulse profile changes present interesting challenges to aspects of the magnetar model.
The persistently bright ultra-compact neutron star low-mass X-ray binary 4U 1820$-$30 displays a $sim$170 d accretion cycle, evolving between phases of high and low X-ray modes, where the 3 -- 10 keV X-ray flux changes by a factor of up to $approx 8$. The source is generally in a soft X-ray spectral state, but may transition to a harder state in the low X-ray mode. Here, we present new and archival radio observations of 4U 1820$-$30 during its high and low X-ray modes. For radio observations taken within a low mode, we observed a flat radio spectrum consistent with 4U 1820$-$30 launching a compact radio jet. However, during the high X-ray modes the compact jet was quenched and the radio spectrum was steep, consistent with optically-thin synchrotron emission. The jet emission appeared to transition at an X-ray luminosity of $L_{rm X (3-10 keV)} sim 3.5 times 10^{37} (D/rm{7.6 kpc})^{2}$ erg s$^{-1}$. We also find that the low-state radio spectrum appeared consistent regardless of X-ray hardness, implying a connection between jet quenching and mass accretion rate in 4U 1820$-$30, possibly related to the properties of the inner accretion disk or boundary layer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا