A new investigation of the supernova remnant (SNR) N157B was carried out with the Australia Telescope Compact Array. Radio continuum images of the entire 30 Doradus region have been made at 3.5 and 6 cm wavelength with a resolution of 2. These data allow a high resolution study of the spectral index distribution and polarization properties of both N157B and the nearby 30 Doradus nebula (the latter will be reported in a subsequent paper). N157B is an extended Crab-type SNR which may be beginning the transition to a composite remnant. There is little apparent fine structure and the brightest radio region is several parsecs from the probable position of the X-ray pulsar. The SNR has a radio spectral index of -0.19 and is significantly polarized at 3.5 cm but not at longer wavelengths.
The vast majority of Galactic supernova remnants (SNRs) were detected by their synchrotron radio emission. Recently, the evolved SNR G107.0+9.0 with a diameter of about 3~deg or 75~pc up to 100~pc in size was optically detected with an indication of faint associated radio emission. This SNR requires a detailed radio study. We aim to search for radio emission from SNR G107.0+9.0 by analysing new data from the Effelsberg 100-m and the Urumqi 25-m radio telescopes in addition to available radio surveys. Radio SNRs outside of the Galactic plane, where confusion is rare, must be very faint if they have not been identified so far. Guided by the H$alpha$ emission of G107.0+9.0, we separated its radio emission from the Galactic large-scale emission. Radio emission from SNR G107.0+9.0 is detected between 22~MHz and 4.8~GHz with a steep non-thermal spectrum, which confirms G107.0+9.0 as an SNR. Its surface brightness is among the lowest known for Galactic SNRs. Polarised emission is clearly detected at 1.4~GHz but is fainter at 4.8~GHz. We interpret the polarised emission as being caused by a Faraday screen associated with G107.0+9.0 and its surroundings. Its ordered magnetic field along the line of sight is below 1~$mu$G. At 4.8~GHz, we identified a depolarised filament along the western periphery of G107.0+9.0 with a magnetic field strength along the line of sight $B{_{||}} sim 15~mu$G, which requires magnetic field compression. G107.0+9.0 adds to the currently small number of known, evolved, large-diameter, low-surface-brightness Galactic SNRs. We have shown that such objects can be successfully extracted from radio-continuum surveys despite the dominating large-scale diffuse Galactic emission.
We present 1 to 10GHz radio continuum flux density, spectral index, polarisation and Rotation Measure (RM) images of the youngest known Galactic Supernova Remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array (ATCA). We have conducted an expansion study spanning 8 epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3. We find a mean radio continuum expansion rate of ($0.78 pm 0.09$) per cent year$^{-1}$ (or $sim8900$ km s$^{-1}$ at an assumed distance of 8.5 kpc), although the expansion rate varies across the SNR perimeter. In the case of the most recent epoch between 2016 and 2017, we observe faster-than-expected expansion of the northern region. We find a global spectral index for G1.9+0.3 of $-0.81pm0.02$ (76 MHz$-$10 GHz). Towards the northern region, however, the radio spectrum is observed to steepen significantly ($sim -$1). Towards the two so called (east & west) ears of G1.9+0.3, we find very different RM values of 400-600 rad m$^{2}$ and 100-200 rad m$^{2}$ respectively. The fractional polarisation of the radio continuum emission reaches (19 $pm$ 2)~per~cent, consistent with other, slightly older, SNRs such as Cas~A.
We simulate the evolution of supernova remnant (SNR) W51C. The simulation shows the existence of a new northeast edge. We present magnetic field structure of the W51 complex (SNR W51C and two HII regions W51A/B) by employing the 11 cm survey data of Effelsberg. This new edge is identified and overlaps with W51A along the line of sight, which gives a new angular diameter of about 37 for the quasi-circular remnant. In addition, we assemble the OH spectral lines (1612/1665/1720 MHz) towards the complex by employing the newly released THOR (The HI OH Recombination line survey of Milky Way) data. We find that the known 1720 MHz OH maser in the W51B/C overlap area is located away from the detected 1612/1665MHz absorption region. The latter is sitting at the peak of the HII region G49.2-0.35 within W51B.
Supernova remnants (SNRs) are widely considered to be sites of Galactic cosmic ray (CR) acceleration. Vela is one of the nearest Galactic composite SNRs to Earth accompanied by the Vela pulsar and its pulsar wind nebula (PWN) Vela X. The Vela SNR is one of the most studied remnants and it benefits from precise estimates of various physical parameters such as distance and age. Therefore, it is a perfect object for a detailed study of physical processes in SNRs. The Vela SNR expands into the highly inhomogeneous cloudy interstellar medium (ISM) and its dynamics is determined by the heating and evaporation of ISM clouds. It features an asymmetrical X-ray morphology which is explained by the expansion into two media with different densities. This could occur if the progenitor of the Vela SNR exploded close to the edge of the stellar wind bubble of the nearby Wolf-Rayet star $gamma^2$Velorum and hence one part of the remnant expands into the bubble. The interaction of the ejecta and the main shock of the remnant with ISM clouds causes formation of secondary shocks at which additional particle acceleration takes place. This may lead to the close to uniform distribution of relativistic particles inside the remnant. We calculate the synchrotron radio emission within the framework of the new hydrodynamical model which assumes the supernova explosion at the edge of the stellar wind bubble. The simulated radio emission agrees well with both the total radio flux from the remnant and the complicated radio morphology of the source.
We present a high-resolution radio study of the supernova remnant (SNR) G11.2-0.3 using archival VLA data. Spectral tomography is performed to determine the properties of this composite-type SNRs individual components, which have only recently been distinguished through X-ray observations. Our results indicate that the spectral index of the pulsar wind nebula (PWN), or plerion, is alpha_P ~ 0.25. We observe a spectral index of alpha_S ~ 0.56 throughout most of the SNR shell region, but also detect a gradient in alpha in the south-eastern component. We compare the spectral index and flux density with recent single-dish radio data of the source. Also, the radio efficiency and morphological properties of this PWN are found to be consistent with results for other known PWN systems.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!