Do you want to publish a course? Click here

Age difference between the populations of binary and single F~stars revealed from HIPPARCOS data

49   0   0.0 ( 0 )
 Added by Anatoly A. Suchkov
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have compared the kinematics and metallicity of the main sequence binary and single {it uvby} F stars from the {it HIPPARCOS} catalog to see if the populations of these stars originate from the same statistical ensemble. The velocity dispersions of the known unresolved binary F stars have been found to be dramatically smaller than those of the single F stars. This suggests that the population of these binaries is, in fact, younger than that of the single stars, which is further supported by the difference in metal abundance: the binaries turn out to be, on average, more metal rich than the single stars. So, we conclude that the population of these binaries is indeed {it younger} than that of the single F stars. Comparison of the single F stars with the C binaries (binary candidates identified in Suchkov & McMaster 1999) has shown, on the other hand, that the latter stars are, on average, {it older} than the single F stars. We suggest that the age difference between the single F stars, known unresolved binaries, and C binaries is associated with the fact that stellar evolution in a binary systems depends on the binary components mass ratio and separation, with these parameters being statistically very different for the known binaries and C binaries (e.g., mostly substellar secondaries in C binaries versus stellar secondaries in known binaries). In general we conclude that the populations of known binaries, C binaries, and single F stars do not belong to the same statistical ensemble. The implications of the discovered age difference between these populations along with the corresponding differences in kinematics and metallicity should be important not only for understanding the evolution of stars but also for the history of star formation and the evolution of the local galactic disk.



rate research

Read More

We present a detailed determination and analysis of 3D stellar mass distribution of the Galactic disk for mono-age populations using a sample of 0.93 million main-sequence turn-off and subgiant stars from the LAMOST Galactic Surveys. Our results show (1) all stellar populations younger than 10,Gyr exhibit strong disk flaring, which is accompanied with a dumpy vertical density profile that is best described by a $sech^n$ function with index depending on both radius and age; (2) Asymmetries and wave-like oscillations are presented in both the radial and vertical direction, with strength varying with stellar populations; (3) As a contribution by the Local spiral arm, the mid-plane stellar mass density at solar radius but 400--800,pc (3--6$^circ$) away from the Sun in the azimuthal direction has a value of $0.0594pm0.0008$,$M_odot$/pc$^3$, which is 0.0164,$M_odot$/pc$^3$ higher than previous estimates at the solar neighborhood. The result causes doubts on the current estimate of local dark matter density; (4) The radial distribution of surface mass density yields a disk scale length evolving from $sim$4,kpc for the young to $sim$2,kpc for the old populations. The overall population exhibits a disk scale length of $2.48pm0.05$,kpc, and a total stellar mass of $3.6(pm0.1)times10^{10}$,$M_odot$ assuming $R_{odot}=8.0$,kpc, and the value becomes $4.1(pm0.1)times10^{10}$,$M_odot$ if $R_{odot}=8.3$,kpc; (5) The disk has a peak star formation rate ({rm SFR}) changing from 6--8,Gyr at the inner to 4--6,Gyr ago at the outer part, indicating an inside-out assemblage history. The 0--1,Gyr population yields a recent disk total {rm SFR} of $1.96pm0.12$,$M_odot$/yr.
We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears clearly present. By selecting those objects that are not affected by bias, we find a mean absolute magnitude of Mv~5.7, a downward revision from 5.9 mag. listed in Schmidt-Kaler (1982). Some objects have absolute magnitudes far brighter than Mv~5.7, and it is suggested that these objects (~20% of the total sample) are K0IV stars which may have been mis-classified as a K0V star. The presence of the Malmquist bias in even this high quality sample suggests that no sample can be expected to be bias-free.
We cross-correlate the Herbig & Bell and Hipparcos Catalogues in order to extract the results for young stellar objects (YSOs). We compare the distances of individual young stars and the distance of their presumably associated molecular clouds, taking into account post-Hipparcos distances to the relevant associations and using Hipparcos intermediate astrometric data to derive new parallaxes of the pre-main sequence stars based on their grouping. We confirm that YSOs are located in their associated clouds, as anticipated by a large body of work, and discuss reasons which make the individual parallaxes of some YSOs doubtful. We find in particular that the distance of Taurus YSOs as a group is entirely consistent with the molecular cloud distance, although Hipparcos distances of some faint Taurus-Auriga stars must be viewed with caution. We then improve some of the solutions for the binary and multiple pre-main sequence stars. In particular, we confirm three new astrometric young binaries discovered by Hipparcos: RY Tau, UX Ori, and IX Oph.
Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to PARSEC models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of $log{R_{HK}}$ and $vsin{i}$, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density $rho_{star}$ allows us to compute stellar luminosity even if the distance is not available, by combining $rho_{star}$ with the spectroscopic $log{g}$. The median value of the TPH ages is $sim5$ Gyr. Even if this sample is not very large, however, the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5) Gyr and $sim4.8$ Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. We also conclude that the age of our Sun is consistent with the age distribution of solar neighbourhood MS stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered the possibility that our selected samples are older than the average disc population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا