Do you want to publish a course? Click here

Age consistency between exoplanet hosts and field stars

288   0   0.0 ( 0 )
 Added by Andrea Bonfanti
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to PARSEC models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of $log{R_{HK}}$ and $vsin{i}$, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density $rho_{star}$ allows us to compute stellar luminosity even if the distance is not available, by combining $rho_{star}$ with the spectroscopic $log{g}$. The median value of the TPH ages is $sim5$ Gyr. Even if this sample is not very large, however, the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5) Gyr and $sim4.8$ Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. We also conclude that the age of our Sun is consistent with the age distribution of solar neighbourhood MS stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered the possibility that our selected samples are older than the average disc population.



rate research

Read More

Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.
The mean density of a star transited by a planet, brown dwarf or low mass star can be accurately measured from its light curve. This measurement can be combined with other observations to estimate its mass and age by comparison with stellar models. Our aim is to calculate the posterior probability distributions for the mass and age of a star given its density, effective temperature, metallicity and luminosity. We computed a large grid of stellar models that densely sample the appropriate mass and metallicity range. The posterior probability distributions are calculated using a Markov-chain Monte-Carlo method. The method has been validated by comparison to the results of other stellar models and by applying the method to stars in eclipsing binary systems with accurately measured masses and radii. We have explored the sensitivity of our results to the assumed values of the mixing-length parameter, $alpha_{rm MLT}$, and initial helium mass fraction, Y. For a star with a mass of 0.9 solar masses and an age of 4 Gyr our method recovers the mass of the star with a precision of 2% and the age to within 25% based on the density, effective temperature and metallicity predicted by a range of different stellar models. The masses of stars in eclipsing binaries are recovered to within the calculated uncertainties (typically 5%) in about 90% of cases. There is a tendency for the masses to be underestimated by about 0.1 solar masses for some stars with rotation periods P$_{rm rot}< 7$d. Our method makes it straightforward to determine accurately the joint posterior probability distribution for the mass and age of a star eclipsed by a planet or other dark body based on its observed properties and a state-of-the art set of stellar models.
Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters ($T_{rm{eff}}$, $log ,(g)$, $rm{[Fe/H]}$, $v_{rm{mic}}$, $v_{rm{rad}}$, $v sin ,(i)$, and $A(rm{Li})$) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, $T_{rm eff}$, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.
Stars with hot Jupiters tend to be rotating faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter $Q_star$ follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here we analyze the sample of all 188 known hot Jupiters with an orbital period $< 3.5$ days and a cool host star ($T_{eff} < 6100$ K). We find evidence that the tidal dissipation parameter ($Q_star$) increases sharply with forcing frequency, from $10^5$ at 0.5 day$^{-1}$ to $10^7$ at 2 day$^{-1}$. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, hot Jupiters, and warm Jupiters. It may also allow for a hot Jupiter to damp the obliquity of its host star prior to being destroyed by tidal decay.
We present a substantial extension of the mm-wave continuum photometry catalog for Taurus circumstellar dust disks. Combining new Submillimeter Array data with measurements in the literature, we construct a mm-wave luminosity distribution for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a (3-sigma) depth of ~3 mJy. The resulting census eliminates a longstanding bias against disks with late-type hosts, and thereby reveals a strong correlation between L_mm and the host spectral type. We confirm that this corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships: the results indicate a typical 1.3 mm flux density of 25 mJy for solar mass hosts and a power-law scaling L_mm propto M_star^1.5-2.0. We suggest that a reasonable treatment of dust temperature in the conversion from L_mm to M_disk favors an inherently linear M_disk propto M_star scaling, with a typical disk-to-star mass ratio of $sim$0.2--0.6%. The RMS dispersion around this regression is 0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a FWHM range of a factor of 40 on the inferred M_disk (or L_mm) at any given host mass. We argue that this relationship between M_disk and M_star likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of L_mm between Taurus and other clusters (abridged).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا