No Arabic abstract
We find that a preliminary classification of LINERs energetics may be made in terms of the FIR-radio correlation of Wolf-Rayet galaxies. The AGN- or starburst-supported LINERs can be distinguished by their FIR-to-radio ratio, $Qequiv L(1.4{rm GHz})/$ $L(60mu{rm m})>$ or $<0.01$. It is interesting to note that almost all the LINERs with inner rings might be starburst- supported, indicating reduced AGN activities compared with those of the AGN-supported ones. We also find that a shock-heating phase for the warm dust component might be important for some starbursts at the burst age of $ge 10^{7}$ yr, with $Q<0.001$.
We present the main results of the PhD Thesis carried out by Lopez-Sanchez (2006), in which a detailed morphological, photometrical and spectroscopical analysis of a sample of 20 Wolf-Rayet (WR) galaxies was realized. The main aims are the study of the star formation and O and WR stellar populations in these galaxies and the role that interactions between low surface companion objects have in the triggering of the bursts. We analyze the morphology, stellar populations, physical conditions, chemical abundances and kinematics of the ionized gas, as well as the star-formation activity of each system.
(Abridged) We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show the presence of a substantial population of massive stars. The main aims are the study of the massive star formation and stellar populations in these galaxies, and the role that interactions with or between dwarf galaxies and/or low surface companion objects have in triggering the bursts. We completed new deep optical and NIR broad-band images, as well as the new continuum-subtracted H$alpha$ maps, of our sample of Wolf-Rayet galaxies. We analyze the morphology of each system and its surroundings and quantify the photometric properties of all important objects. All data were corrected for both extinction and nebular emission using our spectroscopic data. The age of the most recent star-formation burst is estimated and compared with the age of the underlying older low-luminosity population. The Ha-based star-formation rate, number of O7V equivalent stars, mass of ionized gas, and mass of the ionizing star cluster are also derived. We found interaction features in many (15 up to 20) of the analyzed objects, which were extremely evident in the majority. We checked that the correction for nebular emission to the broad-band filter fluxes is important in compact objects and/or with intense nebular emission to obtain realistic colors and compare with the predictions of evolutionary synthesis models. The estimate of the age of the most recent star-formation burst is derived consistently. With respect to the results found in individual objects, we remark the strong Ha emission found in IRAS 08208+2816, UM 420, and SBS 0948+532, the detection of a double-nucleus in SBS 0926+606A, a possible galactic wind in Tol 9, and one (two?) nearby dwarf star-forming galaxies surrounding Tol 1457-437.
We present an analysis of the far-infrared (FIR)-radio correlation within a group of nearby star-forming galaxy disks observed as part of the {it Spitzer} Infrared Nearby Galaxies Survey (SINGS). In our study we critically test a phenomenological model for the FIR-radio correlation which describes the radio image as a smeared version of the infrared image. The physical basis for this model is that cosmic-ray electrons (CR electrons) will diffuse significant distances from their originating sources before decaying by synchrotron emission. We find that this description generally works well, improving the correlation between the radio and infrared images of our four sample galaxies by an average factor of $sim$1.6. We also find that the best-fit smearing kernels seem to show a dependence on the ongoing star formation activity within each disk. Galaxies having lower star formation activity (NGC 2403 and NGC 3031) are best-fit using larger smearing kernels than galaxies with more active star-forming disks (NGC 5194 and NGC 6946). We attribute this trend to be due to a recent deficit of CR electron injection into the interstellar medium of galaxies with lower star formation activity throughout their disks.
We use deep panchromatic datasets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared and VLA radio continuum imaging, to explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation of star-forming galaxies to z~4. Our main results can be summarized as follows: i) the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while its normalization keeps increasing with redshift; ii) for the first time here we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated, strikingly we find that this attenuation relation evolves very weakly with redshift, the amount of dust attenuation increasing by less than 0.3 magnitudes over the redshift range [0.5-4] for a fixed stellar mass, as opposed to a tenfold increase of star formation rate; iv) the correlation between dust attenuation and the UV spectral slope evolves in redshift, with the median UV spectral slope of star-forming galaxies becoming bluer with redshift. By z~3, typical UV slopes are inconsistent, given the measured dust attenuation, with the predictions of commonly used empirical laws. Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than stellar reddening at all redshifts probed, and also that the amount of dust attenuation at a fixed ISM metallicity increases with redshift. We speculate that our results support evolving ISM conditions of typical star-forming galaxies such that at z~1.5 Main Sequence galaxies have ISM conditions getting closer to those of local starbursts.
We have analysed, for the first time, the clustering properties of Wolf-Rayet (W-R) galaxies, using a large sample of 846 W-R galaxies selected from the Data Release 4 (DR4) of the SDSS. We compute the cross-correlation function between W-R galaxies and a reference sample of galaxies drawn from the DR4. We compare the function to the results for control samples of non-W-R star-forming galaxies that are matched closely in redshift, luminosity, concentration, 4000-AA break strength and specific star formation rate (SSFR). On scales larger than a few Mpc, W-R galaxies have almost the same clustering amplitude as the control samples, indicating that W-R galaxies and non-W-R control galaxies populate dark matter haloes of similar masses. On scales between 0.1--1$h^{-1}$ Mpc, W-R galaxies are less clustered than the control samples, and the size of the difference depends on the SSFR. Based on both observational and theoretical considerations, we speculate that this negative bias can be interpreted by W-R galaxies residing preferentially at the centers of their dark matter haloes. We examine the distribution of W-R galaxies more closely using the SDSS galaxy group catalogue of Yang et al., and find that $sim$82% of our W-R galaxies are the central galaxies of groups, compared to $sim$74% for the corresponding control galaxies. We find that W-R galaxies are hosted, on average, by dark matter haloes of masses of$10^{12.3}M_odot$, compared to $10^{12.1}M_odot$ for centrally-located W-R galaxies and $10^{12.7}M_odot$ for satellite ones. We would like to point out that this finding, which provides a direct observational support to our conjecture, is really very crude due to the small number of W-R galaxies and the incompleteness of the group catalogue, and needs more work in future with larger samples.