Do you want to publish a course? Click here

Numerical investigation of surface level instability due to tube in vibrating bed of powder

98   0   0.0 ( 0 )
 Added by Yoshihiro Taguchi
 Publication date 1995
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface level instability when tube is injected into vibrating bed of powder, which was originally found in experiments, is investigated numerically. We find that thicker (thiner) tube makes surface level inside tube higher (lower) than surface level outside tube. With fixed acceleration amplitude of vibration, surface level inside tube becomes higher as amplitude of vibration increases, which can be explained by considering the dependence upon strength of convective flow.



rate research

Read More

Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain near their local stable states, the probability distribution is Gaussian. On the other hand, in the fluidized phase, where the particles can exchange their positions, the distribution clearly deviates from Gaussian. This is interpreted with two analogies; aggregation processes and soft-to-hard turbulence transition in thermal convection. The non-Gaussian distribution is well-approximated by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions in the former analogy.
We demonstrate that Fe sheathed LaO0.9F0.1FeAs wires with Ti as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. Comparing to the common two-step vacuum quartz tube synthesis method, the PIT method is more convenient and safe for synthesizing the novel iron-based layered superconductors. Structural analysis by mean of x-ray diffraction shows that the main phase of LaO0.9F0.1FeAs was obtained by this synthesis method. The transition temperature of the LaO0.9F0.1FeAs wire is around 25 K. The micrograph shows a homogeneous microstructure with a grain size of 1-3 micrometers. The results suggest that the PIT process is promising in preparing high-quality iron-based layered superconductor wires.
Among metal additive manufacturing technologies, powder-bed fusion features very thin layers and rapid solidification rates, leading to long build jobs and a highly localized process. Many efforts are being devoted to accelerate simulation times for practical industrial applications. The new approach suggested here, the virtual domain approximation, is a physics-based rationale for spatial reduction of the domain in the thermal finite-element analysis at the part scale. Computational experiments address, among others, validation against a large physical experiment of 17.5 $mathrm{[cm^3]}$ of deposited volume in 647 layers. For fast and automatic parameter estimation at such level of complexity, a high-performance computing framework is employed. It couples FEMPAR-AM, a specialized parallel finite-element software, with Dakota, for the parametric exploration. Compared to previous state-of-the-art, this formulation provides higher accuracy at the same computational cost. This sets the path to a fully virtualized model, considering an upwards-moving domain covering the last printed layers.
Quality control in additive manufacturing can be achieved through variation control of the quantity of interest (QoI). We choose in this work the microstructural microsegregation to be our QoI. Microsegregation results from the spatial redistribution of a solute element across the solid-liquid interface that forms during solidification of an alloy melt pool during the laser powder bed fusion process. Since the process as well as the alloy parameters contribute to the statistical variation in microstructural features, uncertainty analysis of the QoI is essential. High-throughput phase-field simulations estimate the solid-liquid interfaces that grow for the melt pool solidification conditions that were estimated from finite element simulations. Microsegregation was determined from the simulated interfaces for different process and alloy parameters. Correlation, regression, and surrogate model analyses were used to quantify the contribution of different sources of uncertainty to the QoI variability. We found negligible contributions of thermal gradient and Gibbs-Thomson coefficient and considerable contributions of solidification velocity, liquid diffusivity, and segregation coefficient on the QoI. Cumulative distribution functions and probability density functions were used to analyze the distribution of the QoI during solidification. Our approach, for the first time, identifies the uncertainty sources and frequency densities of the QoI in the solidification regime relevant to additive manufacturing.
The critical current density (Jc) of hot isostatic pressed (HIPed) MgB2 wires, measured by d.c. transport and magnetization, is compared with that of similar wires annealed at ambient pressure. The HIPed wires have a higher Jc than the annealed wires, especially at high temperatures and magnetic fields, and higher irreversibility field (Hirr). The HIPed wires are promising for applications, with Jc>106 A/cm2 at 5 K and zero field and >104 A/cm2 at 1.5 T and 26.5 K, and Hirr ~ 17 T at 4 K. The improvement is attributed to a high density of structural defects, which are the likely source of vortex pinning. These defects, observed by transmission electron microscopy, include small angle twisting, tilting, and bending boundaries, resulting in the formation of sub-grains within MgB2 crystallites.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا