No Arabic abstract
Requirements Engineering (RE) requires the collaboration of various roles in SE, such as requirements engineers, stakeholders and other developers, and it is thus a highly human dependent process in software engineering (SE). Identifying how human aspects such as personality, motivation, emotions, communication, gender, culture and geographic distribution might impact RE would assist us in better supporting successful RE. The main objective of this paper is to systematically review primary studies that have investigated the effects of various human aspects on RE. A systematic literature review (SLR) was conducted and identified 474 initial primary research studies. These were eventually filtered down to 74 relevant, high-quality primary studies. Among the studies, the effects of communication have been considered in many RE studies. Other human aspects such as personality, motivation and gender have mainly been investigated to date related to SE studies including RE as one phase. Findings show that studying more than one human aspect together is beneficial, as this reveals relationships between various human aspects and how they together impact the RE process. However, the majority of these studied combinations of human aspects are unique. From 56.8% of studies that identified the effects of human aspects on RE, 40.5% identified the positive impact, 30.9% negative, 26.2% identified both impacts whereas 2.3% mentioned that there was no impact. This implies that a variety of human aspects positively or negatively affects the RE process and a well-defined theoretical analysis on the effects of different human aspects on RE remains to be defined and practically evaluated. Findings of this SLR help researchers who are investigating the impact of various human aspects on RE by identifying well-studied research areas, and highlight new areas that should be focused on in future research.
Requirements Engineering (RE) is a process that requires high collaboration between various roles in software engineering (SE), such as requirements engineers, stakeholders, developers, etc. Their demographics, views, understanding of technologies, working styles, communication and collaboration capabilities make RE highly human dependent. Identifying how human aspects such as motivation, domain knowledge, communication skills, personality, emotions, culture, etc might impact RE would help us to improve the RE activities and SE in general. The aim of this study is to understand current industry perspectives on the influence of human aspects on RE. We surveyed 111 software practitioners involved in RE activities, and our findings show that 86.4% of participants agree, that the success of RE greatly depends on the people involved in it. Software practitioners consider motivation, domain knowledge, attitude, communication skills and personality as highly important human aspects when involved in RE. A set of factors, we categorize as human/social and technical were identified as software practitioners motivation factors when involved in RE activities, where the majority of are motivated due to human/social factors. Furthermore, our findings suggest that software practitioners personality characteristics should also be paid more attention to as they are important when conducting RE effectively.
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this cross-cutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 84 papers across 22 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and likely areas of fertile exploration for the future.
Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results, and identify future trends to encourage researchers to advance their current work.
Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evolution of blockchain, especially after the Ethereum DAO attack in 2016. To understand the state-of-the-art of blockchain governance and provide an actionable guidance for academia and practitioners, in this paper, we conduct a systematic literature review, identifying 34 primary studies. Our study comprehensively investigates blockchain governance via 5W1H questions. The study results reveal several major findings: 1) the adaptation and upgrade of blockchain are the primary purposes of blockchain governance, while both software quality attributes and human value attributes need to be increasingly considered; 2) blockchain governance mainly relies on the project team, node operators, and users of a blockchain platform; and 3) existing governance solutions can be classified into process mechanisms and product mechanisms, which mainly focus on the operation phase over the blockchain platform layer.
Context: Software testing plays an essential role in product quality improvement. For this reason, several software testing models have been developed to support organizations. However, adoption of testing process models inside organizations is still sporadic, with a need for more evidence about reported experiences. Aim: Our goal is to identify results gathered from the application of software testing models in organizational contexts. We focus on characteristics such as the context of use, practices applied in different testing process phases, and reported benefits & drawbacks. Method: We performed a Systematic Literature Review (SLR) focused on studies about the application of software testing processes, complemented by results from previous reviews. Results: From 35 primary studies and survey-based articles, we collected 17 testing models. Although most of the existing models are described as applicable to general contexts, the evidence obtained from the studies shows that some models are not suitable for all enterprise sizes, and inadequate for specific domains. Conclusion: The SLR evidence can serve to compare different software testing models for applicability inside organizations. Both benefits and drawbacks, as reported in the surveyed cases, allow getting a better view of the strengths and weaknesses of each model.