Do you want to publish a course? Click here

Charmonium suppression in ultra-relativistic Proton-Proton collisions at LHC energies: A hint for QGP in small systems

191   0   0.0 ( 0 )
 Added by Raghunath Sahoo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Proton-proton ($pp$) collision has been considered as a baseline to study the system produced in relativistic heavy-ion (AA) collisions with the basic assumption that no thermal medium is formed in $pp$ collisions. This warrants a cautious analysis of the system produced in $pp$ collisions at relativistic energies.In this work we investigate the charmonium suppression in $pp$ collisions at $sqrt{s} = 7$ and $13$ TeV to inspect the system formed in these collisions. In this work, charmonium suppression has been studied for various event multiplicities and transverse momenta by including the mechanisms of color screening, gluonic dissociation, collisional damping along with the regeneration due to correlated $cbar c$ pairs. Here we obtain a net suppression of charmonia at high-multiplicity events indicating the possibility towards the formation of quark-gluon plasma in $pp$ collisions.



rate research

Read More

Recently, the CMS Collaboration has published identified particle transverse momentum spectra in high multiplicity events at LHC energies $sqrt s $ = 0.9-13 TeV. In the present work the transverse momentum spectra have been analyzed in the framework of the color fields inside the clusters of overlapping strings, which are produced in high energy hadronic collisions. The non-Abelian nature is reflected in the coherence sum of the color fields which as a consequence gives rise to an enhancement of the transverse momentum and a suppression of the multiplicities relative to the non overlapping strings. The initial temperature and shear viscosity to entropy density ratio $eta/s$ are obtained. For the higher multiplicity events at $sqrt s $ =7 and 13 TeV the initial temperature is above the universal hadronization temperature and is consistent with the creation of de-confined matter. In these small systems it can be argued that the thermalization is a consequence of the quantum tunneling through the event horizon introduced by the confining color fields, in analogy to the Hawking-Unruh effect. The small shear viscosity to entropy density ratio $eta/s$ near the critical temperature suggests that the matter is a strongly coupled Quark Gluon Plasma.
High-multiplicity pp collisions at the Large Hadron Collider (LHC) energies have created special importance in view of the Underlying Event (UE) observables. The recent results of LHC, such as long range angular correlation, flow-like patterns, strangeness enhancement etc. in high multiplicity events are not yet completely understood. In the same direction, the understanding of multiplicity dependence of J/$psi$ production is highly necessary. Transverse spherocity, which is an event shape variable, helps to investigate the particle production by isolating the hard and the soft components. In the present study, we have investigated the multiplicity dependence of J/$psi$ production at mid-rapidity and forward rapidity through the transverse spherocity analysis and tried to understand the role of jets by separating the isotropic and jetty events from the minimum bias collisions. We have analyzed the J/$psi$ production at the mid-rapidity and forward rapidities via dielectron and dimuon channels, respectively using 4C tuned PYTHIA8 event generator. The analysis has been performed in two different center-of-mass energies: $sqrt{s}$ = 5.02 and 13 TeV, to see the energy dependence of jet contribution to the multiplicity dependence study of J/$psi$ production. Furthermore, we have studied the production dynamics through the dependence of thermodynamic parameters on event multiplicity and transverse spherocity.
We analyse the transverse momentum ($p_{rm T}$)-spectra as a function of charged-particle multiplicity at midrapidity ($|y| < 0.5$) for various identified particles such as $pi^{pm}$, $K^{pm}$, $K_S^0$, $p+overline{p}$, $phi$, $K^{*0} + overline {K^{*0}}$, and $Lambda$ + $bar{Lambda}$ in proton-proton collisions at $sqrt{s}$ = 7 TeV using Boltzmann-Gibbs Blast Wave (BGBW) model and thermodynamically consistent Tsallis distribution function. We obtain the multiplicity dependent kinetic freeze-out temperature ($T_{rm kin}$) and radial flow ($beta$) of various particles after fitting the $p_{rm T}$-distribution with BGBW model. Here, $T_{rm kin}$ exhibits mild dependence on multiplicity class while $beta$ shows almost independent behaviour. The information regarding Tsallis temperature and the non-extensivity parameter ($q$) are drawn by fitting the $p_{rm T}$-spectra with Tsallis distribution function. The extracted parameters of these particles are studied as a function of charged particle multiplicity density ($dN_{ch}/deta$). In addition to this, we also study these parameters as a function of particle mass to observe any possible mass ordering. All the identified hadrons show a mass ordering in temperature, non-extensive parameter and also a strong dependence on multiplicity classes, except the lighter particles. It is observed that as the particle multiplicity increases, the $q$-parameter approaches to Boltzmann-Gibbs value, hence a conclusion can be drawn that system tends to thermal equilibrium. The observations are consistent with a differential freeze-out scenario of the produced particles.
The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential and radial flow velocity for different particle species are obtained. Further, these parameters are studied as a function of the mass of the secondary particles. A mass-dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Further a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters.
We have performed a systematic study of $J/psi$ and $psi(2S)$ production in $p-p$ collisions at different LHC energies and at different rapidities using the leading order (LO) non-relativistic QCD (NRQCD) model of heavy quarkonium production. We have included the contributions from $chi_{cJ}$ ($J$ = 0, 1, 2) and $psi(2S)$ decays to $J/psi$. The calculated values have been compared with the available data from the four experiments at LHC namely, ALICE, ATLAS, CMS and LHCb. In case of ALICE, inclusive $J/psi$ and $psi(2S)$ cross-sections have been calculated by including the feed-down from $B$ meson using Fixed-Order Next-to-Leading Logarithm (FONLL) formalism. It is found that all the experimental cross-sections are well reproduced for $p_T >$ 4 GeV within the theoretical uncertainties arising due to the choice of the factorization scale. We also predict the transverse momentum distributions of $J/psi$ and $psi(2S)$ both for the direct and feed-down processes at the upcoming LHC energies of $sqrt{s} =$ 5.1 TeV and 13 TeV for the year 2015.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا