Do you want to publish a course? Click here

Systematic study of Charmonium production in pp collisions at the LHC energies

171   0   0.0 ( 0 )
 Added by Mahatsab Mandal
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We have performed a systematic study of $J/psi$ and $psi(2S)$ production in $p-p$ collisions at different LHC energies and at different rapidities using the leading order (LO) non-relativistic QCD (NRQCD) model of heavy quarkonium production. We have included the contributions from $chi_{cJ}$ ($J$ = 0, 1, 2) and $psi(2S)$ decays to $J/psi$. The calculated values have been compared with the available data from the four experiments at LHC namely, ALICE, ATLAS, CMS and LHCb. In case of ALICE, inclusive $J/psi$ and $psi(2S)$ cross-sections have been calculated by including the feed-down from $B$ meson using Fixed-Order Next-to-Leading Logarithm (FONLL) formalism. It is found that all the experimental cross-sections are well reproduced for $p_T >$ 4 GeV within the theoretical uncertainties arising due to the choice of the factorization scale. We also predict the transverse momentum distributions of $J/psi$ and $psi(2S)$ both for the direct and feed-down processes at the upcoming LHC energies of $sqrt{s} =$ 5.1 TeV and 13 TeV for the year 2015.



rate research

Read More

The Quark Gluon String Model (QGSM) reproduces well the global characteristics of the $pp$ collisions at RHIC and LHC, e.g., the pseudorapidity and transverse momenta distributions at different centralities. The main goal of this work is to employ the Monte Carlo QGSM for description of femtoscopic characteristics in $pp$ collisions at RHIC and LHC. The study is concentrated on the low multiplicity and multiplicity averaged events, where no collective effects are expected. The different procedures for fitting the one-dimensional correlation functions of pions are studied and compared with the space-time distributions extracted directly from the model. Particularly, it is shown that the double Gaussian fit reveals the contributions coming separately from resonances and from directly produced particles. The comparison of model results with the experimental data favors decrease of particle formation time with rising collision energy.
In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predictions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.
We present the extraction of the temperature by analyzing the charged particle transverse momentum spectra in lead-lead (Pb-Pb) and proton-proton (${bf pp}$) collisions at LHC energies from the ALICE Collaboration using the Color String Percolation Model (CSPM). From the measured energy density ${bm varepsilon}$ and the temperature T the dimensionless quantity ${bm varepsilon/}T^{4}$ is obtained to get the degrees of freedom (DOF), ${bm varepsilon}/T^{4}$ = DOF ${ pi^{2}}$/30. We observe for the first time a two-step behavior in the increase of DOF, characteristic of deconfinement, above the hadronization temperature at temperature $sim$ 210 MeV for both Pb-Pb and ${bf pp}$ collisions and a sudden increase to the ideal gas value of $sim $ 47 corresponding to three quark flavors in the case of Pb-Pb collisions.
We study multiplicity correlations of hadrons in forward and backward hemispheres in $pp$ inelastic interactions at energies 200GeV $leq sqrt{s} leq$ 13TeV within the microscopic quark-gluon string model. The model correctly describes (i) the almost linear dependence of average multiplicity in one hemisphere on the particle multiplicity in other hemisphere in the center-of-mass frame; (ii) the increase of the slope parameter $b_{corr}$ with rising collision energy; (iii) the quick falloff of the correlation strength with increase of the midrapidity gap; (iv) saturation of the forward-backward correlations at very high multiplicities. Investigation of the sub-processes on partonic level reveals that these features can be attributed to short-range partonic correlations within a single string and superposition of several sub-processes containing different numbers of soft and hard Pomerons with different mean multiplicities. If the number of Pomerons in the event is fixed, no forward-backward correlations are observed. Predictions are made for the top LHC energy $sqrt{s} = 13$TeV.
In this paper we perform a systematic study of the exclusive dilepton production by $gamma gamma$ interactions in $PbPb$ collisions at the LHC Run 2 energies considering different levels of precision for the treatment of the absorptive corrections and for the nuclear form factor. The rapidity and invariant mass distributions are estimated taking into account the experimental cutoffs and a comparison with the recent ALICE and ATLAS data for the $e^+ e^-$ and $mu^+ mu^-$ production is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا