Do you want to publish a course? Click here

Anomalous bulk-boundary correspondence in dimerized topological insulators

180   0   0.0 ( 0 )
 Added by He Ai-Lei
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather at corners in the two-dimensional first-order and second-order topological insulators, respectively. Here, we report two kinds of topological states hosting anomalous bulk-boundary correspondence in the extended two-dimensional dimerized lattice with staggered flux threading. At 1/2-filling, we observe isolated corner states with no fractional charge as well as metallic near-edge states in the C = 2 Chern insulator states. At 1/4-filling, we find a C = 0 topologically nontrivial state, where the robust edge states are well localized along edges but bypass corners. These robust topological insulating states significantly differ from both conventional Chern insulators and usual high-order topological insulators.



rate research

Read More

We study a link between the ground-state topology and the topology of the lattice via the presence of anomalous states at disclinations -- topological lattice defects that violate a rotation symmetry only locally. We first show the existence of anomalous disclination states, such as Majorana zero-modes or helical electronic states, in second-order topological phases by means of Volterra processes. Using the framework of topological crystals to construct $d$-dimensional crystalline topological phases with rotation and translation symmetry, we then identify all contributions to $(d-2)$-dimensional anomalous disclination states from weak and first-order topological phases. We perform this procedure for all Cartan symmetry classes of topological insulators and superconductors in two and three dimensions and determine whether the correspondence between bulk topology, boundary signatures, and disclination anomaly is unique.
The breakdown of the bulk-boundary correspondence in non-Hermitian (NH) topological systems is an open, controversial issue. In this paper, to resolve this issue, we ask the following question: Can a (global) topological invariant completely describe the topological properties of a NH system as its Hermitian counterpart? Our answer is no. One cannot use a global topological invariant (including non-Bloch topological invariant) to accurately characterize the topological properties of the NH systems. Instead, there exist a new type of topological invariants that are absence in its Hermitian counterpart -- the state dependent topological invariants. With the help of the state-dependent topological invariants, we develop a new topological theory for NH topological system beyond the general knowledge for usual Hermitian systems and obtain an exact formulation of the bulk-boundary correspondence, including state-dependent phase diagram, state-dependent phase transition and anomalous transport properties (spontaneous topological current). Therefore, these results will help people to understand the exotic topological properties of various non-Hermitian systems.
In this work, we study the disorder effects on the bulk-boundary correspondence of two-dimensional higher-order topological insulators (HOTIs). We concentrate on two cases: (i) bulk-corner correspondence, (ii) edge-corner correspondence. For the bulk-corner correspondence case, we demonstrate the existence of the mobility gaps and clarify the related topological invariant that characterizes the mobility gap. Furthermore, we find that, while the system preserves the bulk-corner correspondence in the presence of disorder, the corner states are protected by the mobility gap instead of the bulk gap. For the edge-corner correspondence case, we show that the bulk mobility gap and edge band gaps of HOTIs are no longer closed simultaneously. Therefore, a rich phase diagram is obtained, including various disorder-induced phase transition processes. Notably, a disorder-induced transition from the non-trivial to trivial phase is realized, distinguishing the HOTIs from the other topological states. Our results deepen the understanding of bulk-boundary correspondence and enrich the topological phase transitions of disordered HOTIs.
123 - Bo Fu , Zi-Ang Hu , Shun-Qing Shen 2021
The chiral hinge modes are the key feature of a second order topological insulator in three dimensions. Here we propose a quadrupole index in combination of a slab Chern number in the bulk to characterize the flowing pattern of chiral hinge modes along the hinges at the intersection of the surfaces of a sample. We further utilize the topological field theory to demonstrate the correspondent connection of the chiral hinge modes to the quadrupole index and the slab Chern number, and present a picture of three-dimensional quantum anomalous Hall effect as a consequence of chiral hinge modes. The two bulk topological invariants can be measured in electric transport and magneto-optical experiments. In this way we establish the bulk-hinge correspondence in a three-dimensional second order topological insulator.
The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D winding number, which we call the pole winding number, that specifies the number of robust metallic surface bands in the gap as well as their topological character. The underlying general methodology relies on a simple continuous extrapolation from the bulk to the boundary, while tracking the evolution of Greens functions poles in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch the 3D generalization of the pole winding number by in the context of topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا