Do you want to publish a course? Click here

Spacetime finite element methods for control problems subject to the wave equation

179   0   0.0 ( 0 )
 Added by Erik Burman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the approximate control given by the computational method. The proofs are based on the regularity properties of the control given by the Hilbert Uniqueness Method, together with the stability properties of the numerical scheme. Numerical experiments illustrate the results.



rate research

Read More

We consider a stabilized finite element method based on a spacetime formulation, where the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave equation is considered, where data is known in an interior subset of spacetime. For this problem, we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical scheme is optimal with respect to stability properties of the continuum problem and the interpolation errors of approximating with polynomial spaces. Numerical examples are provided that illustrate the methodology.
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More concretely, we explore a parallelization strategy that leverages the power of multicore CPUs and GPUs (graphics cards). We study this parallel method for first-order and second-order Lagrangians and we illustrate its excellent behavior in some interesting applications, namely Zermelos navigation problem, a fuel-optimal navigation problem, and an interpolation problem.
This work is concerned with the optimal control problems governed by a 1D wave equation with variable coefficients and the control spaces $mathcal M_T$ of either measure-valued functions $L_{w^*}^2(I,mathcal M(Omega))$ or vector measures $mathcal M(Omega,L^2(I))$. The cost functional involves the standard quadratic tracking terms and the regularization term $alpha|u|_{mathcal M_T}$ with $alpha>0$. We construct and study three-level in time bilinear finite element discretizations for this class of problems. The main focus lies on the derivation of error estimates for the optimal state variable and the error measured in the cost functional. The analysis is mainly based on some previous results of the authors. The numerical results are included.
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-norm and in the $L^2$-norm are rigorously proved for both schemes. In particular, we have devised a new parameter-friendly DG-XFEM method, which means that no sufficiently large parameters are needed to ensure the optimal convergence of the scheme. To prove the stability of bilinear forms, we derive non-standard trace and inverse inequalities for high-order polynomials on curved sub-elements divided by the interface. All the estimates are independent of the location of the interface relative to the meshes. Numerical examples are given to support the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا