Do you want to publish a course? Click here

Entropy growth during free expansion of an ideal gas

298   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

To illustrate Boltzmanns construction of an entropy function that is defined for a single microstate of a system, we present here the simple example of the free expansion of a one dimensional gas of hard point particles. The construction requires one to define macrostates, corresponding to macroscopic observables. We discuss two different choices, both of which yield the thermodynamic entropy when the gas is in equilibrium. We show that during the free expansion process, both the entropies converge to the equilibrium value at long times. The rate of growth of entropy, for the two choice of macrostates, depends on the coarse graining used to define them, with different limiting behaviour as the coarse graining gets finer. We also find that for only one of the two choices is the entropy a monotonically increasing function of time. Our system is non-ergodic, non-chaotic and essentially non-interacting; our results thus illustrate that these concepts are not very relevant for the question of irreversibility and entropy increase. Rather, the notions of typicality, large numbers and coarse-graining are the important factors. We demonstrate these ideas through extensive simulations as well as analytic results.



rate research

Read More

We consider the non-equilibrium dynamics of the entanglement entropy of a one-dimensional quantum gas of hard-core particles, initially confined in a box potential at zero temperature. At $t=0$ the right edge of the box is suddenly released and the system is let free to expand. During this expansion, the initially correlated region propagates with a non-homogeneous profile, leading to the growth of entanglement entropy. This setting is investigated in the hydrodynamic regime, with tools stemming from semi-classical Wigner function approach and with recent developments of quantum fluctuating hydrodynamics. Within this framework, the entanglement entropy can be associated to a correlation function of chiral twist-fields of the conformal field theory that lives along the Fermi contour and it can be exactly determined. Our predictions for the entanglement evolution are found in agreement with and generalize previous results in literature based on numerical calculations and heuristic arguments.
190 - Tamas S. Biro 2012
A mathematical procedure is suggested to obtain deformed entropy formulas of type K(S_K) = sum_i P_i K(-ln P_i), by requiring zero mutual K(S_K)-information between a finite subsystem and a finite reservoir. The use of this method is first demonstrated on the ideal gas equation of state with finite constant heat capacity, C, where it delivers the Renyi and Tsallis formulas. A novel interpretation of the qstar = 2-q duality arises from the comparison of canonical subsystem and total microcanonical partition approaches. Finally a new, generalized deformed entropy formula is constructed for the linear relation C(S) = C_0 + C_1 S.
204 - G.A. Muradyan , J.R. Anglin 2008
In current experiments with cold quantum gases in periodic potentials, interference fringe contrast is typically the easiest signal in which to look for effects of non-trivial many-body dynamics. In order better to calibrate such measurements, we analyse the background effect of thermal decoherence as it occurs in the absence of dynamical interparticle interactions. We study the effect of optical lattice potentials, as experimentally applied, on the condensed fraction of a non-interacting Bose gas in local thermal equilibrium at finite temperatures. We show that the experimentally observed decrease of the condensate fraction in the presence of the lattice can be attributed, up to a threshold lattice height, purely to ideal gas thermodynamics; conversely we confirm that sharper decreases in first-order coherence observed in stronger lattices are indeed attributable to many-body physics. Our results also suggest that the fringe visibility kinks observed in F.Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005) may be explained in terms of the competition between increasing lattice strength and increasing mean gas density, as the gaussian profile of the red-detuned lattice lasers also increases the effective strength of the harmonic trap.
We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we perform numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of cube that is the geometric shape of the box.
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semi-classical and quantum calculations in the thermal properties of such a system. To check this claim, we calculate the heat capacity and isothermal compressibility of this system semi-classically as well as from the quantum spectrum of the density of states. The quantum calculation is done for a finite number of particles. We find good agreement between the two calculations when the number of particles are taken to be large. We also find that this system has the same thermal properties as an ideal five dimensional Bose gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا