No Arabic abstract
Fully homomorphic encryption (FHE) enables a simple, attractive framework for secure search. Compared to other secure search systems, no costly setup procedure is necessary; it is sufficient for the client merely to upload the encrypted database to the server. Confidentiality is provided because the server works only on the encrypted query and records. While the search functionality is enabled by the full homomorphism of the encryption scheme. For this reason, researchers have been paying increasing attention to this problem. Since Akavia et al. (CCS 2018) presented a framework for secure search on FHE encrypted data and gave a working implementation called SPiRiT, several more efficient realizations have been proposed. In this paper, we identify the main bottlenecks of this framework and show how to significantly improve the performance of FHE-base secure search. In particular, 1. To retrieve $ell$ matching items, the existing framework needs to repeat the protocol $ell$ times sequentially. In our new framework, all matching items are retrieved in parallel in a single protocol execution. 2. The most recent work by Wren et al. (CCS 2020) requires $O(n)$ multiplications to compute the first matching index. Our solution requires no homomorphic multiplication, instead using only additions and scalar multiplications to encode all matching indices. 3. Our implementation and experiments show that to fetch 16 matching records, our system gives an 1800X speed-up over the state of the art in fetching the query results resulting in a 26X speed-up for the full search functionality.
Remote monitoring to support aging in place is an active area of research. Advanced computer vision technology based on deep learning can provide near real-time home monitoring to detect falling and symptoms related to seizure, and stroke. Affordable webcams, together with cloud computing services (to run machine learning algorithms), can potentially bring significant social and health benefits. However, it has not been deployed in practice because of privacy and security concerns. People may feel uncomfortable sending their videos of daily activities (with potentially sensitive private information) to a computing service provider (e.g., on a commercial cloud). In this paper, we propose a novel strategy to resolve this dilemma by applying fully homomorphic encryption (FHE) to an alternative representation of human actions (i.e., skeleton joints), which guarantees information confidentiality while retaining high-performance action detection at a low cost. We design an FHE-friendly neural network for action recognition and present a secure neural network evaluation strategy to achieve near real-time action detection. Our framework for private inference achieves an 87.99% recognition accuracy (86.21% sensitivity and 99.14% specificity in detecting falls) with a latency of 3.1 seconds on real-world datasets. Our evaluation shows that our elaborated and fine-tuned method reduces the inference latency by 23.81%~74.67% over a straightforward implementation.
New cryptographic techniques such as homomorphic encryption (HE) allow computations to be outsourced to and evaluated blindfolded in a resourceful cloud. These computations often require private data owned by multiple participants, engaging in joint evaluation of some functions. For example, Genome-Wide Association Study (GWAS) is becoming feasible because of recent proliferation of genome sequencing technology. Due to the sensitivity of genomic data, these data should be encrypted using different keys. However, supporting computation on ciphertexts encrypted under multiple keys is a non-trivial task. In this paper, we present a comprehensive survey on different state-of-the-art cryptographic techniques and schemes that are commonly used. We review techniques and schemes including Attribute-Based Encryption (ABE), Proxy Re-Encryption (PRE), Threshold Homomorphic Encryption (ThHE), and Multi-Key Homomorphic Encryption (MKHE). We analyze them based on different system and security models, and examine their complexities. We share lessons learned and draw observations for designing better schemes with reduced overheads.
Several cybersecurity domains, such as ransomware detection, forensics and data analysis, require methods to reliably identify encrypted data fragments. Typically, current approaches employ statistics derived from byte-level distribution, such as entropy estimation, to identify encrypted fragments. However, modern content types use compression techniques which alter data distribution pushing it closer to the uniform distribution. The result is that current approaches exhibit unreliable encryption detection performance when compressed data appears in the dataset. Furthermore, proposed approaches are typically evaluated over few data types and fragment sizes, making it hard to assess their practical applicability. This paper compares existing statistical tests on a large, standardized dataset and shows that current approaches consistently fail to distinguish encrypted and compressed data on both small and large fragment sizes. We address these shortcomings and design EnCoD, a learning-based classifier which can reliably distinguish compressed and encrypted data. We evaluate EnCoD on a dataset of 16 different file types and fragment sizes ranging from 512B to 8KB. Our results highlight that EnCoD outperforms current approaches by a wide margin, with accuracy ranging from ~82 for 512B fragments up to ~92 for 8KB data fragments. Moreover, EnCoD can pinpoint the exact format of a given data fragment, rather than performing only binary classification like previous approaches.
Reliable identification of encrypted file fragments is a requirement for several security applications, including ransomware detection, digital forensics, and traffic analysis. A popular approach consists of estimating high entropy as a proxy for randomness. However, many modern content types (e.g. office documents, media files, etc.) are highly compressed for storage and transmission efficiency. Compression algorithms also output high-entropy data, thus reducing the accuracy of entropy-based encryption detectors. Over the years, a variety of approaches have been proposed to distinguish encrypted file fragments from high-entropy compressed fragments. However, these approaches are typically only evaluated over a few, select data types and fragment sizes, which makes a fair assessment of their practical applicability impossible. This paper aims to close this gap by comparing existing statistical tests on a large, standardized dataset. Our results show that current approaches cannot reliably tell apart encryption and compression, even for large fragment sizes. To address this issue, we design EnCoD, a learning-based classifier which can reliably distinguish compressed and encrypted data, starting with fragments as small as 512 bytes. We evaluate EnCoD against current approaches over a large dataset of different data types, showing that it outperforms current state-of-the-art for most considered fragment sizes and data types.
Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient, hardware-based solution to this cryptographic problem. Existing solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries, e.g., as present in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, the resulting code - and data - in the enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.