Do you want to publish a course? Click here

Adding boundary terms to Anderson localized Hamiltonians leads to unbounded growth of entanglement

155   0   0.0 ( 0 )
 Added by Yichen Huang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Yichen Huang




Ask ChatGPT about the research

It is well known that in Anderson localized systems, starting from a random product state the entanglement entropy remains bounded at all times. However, we show that adding a single boundary term to an otherwise Anderson localized Hamiltonian leads to unbounded growth of entanglement. Our results imply that Anderson localization is not a local property. One cannot conclude that a subsystem has Anderson localized behavior without looking at the whole system, as a term that is arbitrarily far from the subsystem can affect the dynamics of the subsystem in such a way that the features of Anderson localization are lost.



rate research

Read More

Many-body localized systems in which interactions and disorder come together defy the expectations of quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing nonequilibrium dynamics. What is less clear, however, is how topological features interplay with many-body localized phases as well as the nature of the transition between a topological and a trivial state within the latter. In this work, we numerically address these questions, using a combination of extensive tensor network calculations, specifically DMRG-X, as well as exact diagonalization, leading to a comprehensive characterization of Hamiltonian spectra and eigenstate entanglement properties.
372 - Abhisek Samanta , Kedar Damle , 2020
Some interacting disordered many-body systems are unable to thermalize when the quenched disorder becomes larger than a threshold value. Although several properties of nonzero energy density eigenstates (in the middle of the many-body spectrum) exhibit a qualitative change across this many-body localization (MBL) transition, many of the commonly-used diagnostics only do so over a broad transition regime. Here, we provide evidence that the transition can be located precisely even at modest system sizes by sharply-defined changes in the distribution of extremal eigenvalues of the reduced density matrix of subsystems. In particular, our results suggest that $p* = lim_{lambda_2 rightarrow ln(2)^{+}}P_2(lambda_2)$, where $P_2(lambda_2)$ is the probability distribution of the second lowest entanglement eigenvalue $lambda_2$, behaves as an order-parameter for the MBL phase: $p*> 0$ in the MBL phase, while $p* = 0$ in the ergodic phase with thermalization. Thus, in the MBL phase, there is a nonzero probability that a subsystem is entangled with the rest of the system only via the entanglement of one subsystem qubit with degrees of freedom outside the region. In contrast, this probability vanishes in the thermal phase.
259 - F. L. Metz , L. Leuzzi , G. Parisi 2013
We present strong numerical evidence for the existence of a localization-delocalization transition in the eigenstates of the 1-D Anderson model with long-range hierarchical hopping. Hierarchical models are important because of the well-known mapping between their phases and those of models with short range hopping in higher dimensions, and also because the renormalization group can be applied exactly without the approximations that generally are required in other models. In the hierarchical Anderson model we find a finite critical disorder strength Wc where the average inverse participation ratio goes to zero; at small disorder W < Wc the model lies in a delocalized phase. This result is based on numerical calculation of the inverse participation ratio in the infinite volume limit using an exact renormalization group approach facilitated by the models hierarchical structure. Our results are consistent with the presence of an Anderson transition in short-range models with D > 2 dimensions, which was predicted using renormalization group arguments. Our finding should stimulate interest in the hierarchical Anderson model as a simplified and tractable model of the Anderson localization transition which occurs in finite-dimensional systems with short-range hopping.
We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and post-quench eigenstates decays {it exponentially} with the system size.
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا