Do you want to publish a course? Click here

Power-Law Entanglement Spectrum in Many-Body Localized Phases

114   0   0.0 ( 0 )
 Added by Maksym Serbyn
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.



rate research

Read More

We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and post-quench eigenstates decays {it exponentially} with the system size.
Many-body localized systems in which interactions and disorder come together defy the expectations of quantum statistical mechanics: In contrast to ergodic systems, they do not thermalize when undergoing nonequilibrium dynamics. What is less clear, however, is how topological features interplay with many-body localized phases as well as the nature of the transition between a topological and a trivial state within the latter. In this work, we numerically address these questions, using a combination of extensive tensor network calculations, specifically DMRG-X, as well as exact diagonalization, leading to a comprehensive characterization of Hamiltonian spectra and eigenstate entanglement properties.
We introduce techniques for analysing the structure of quantum states of many-body localized (MBL) spin chains by identifying correlation clusters from pairwise correlations. These techniques proceed by interpreting pairwise correlations in the state as a weighted graph, which we analyse using an established graph theoretic clustering algorithm. We validate our approach by studying the eigenstates of a disordered XXZ spin chain across the MBL to ergodic transition, as well as the non-equilibrium dyanmics in the MBL phase following a global quantum quench. We successfully reproduce theoretical predictions about the MBL transition obtained from renormalization group schemes. Furthermore, we identify a clear signature of many-body dynamics analogous to the logarithmic growth of entanglement. The techniques that we introduce are computationally inexpensive and in combination with matrix product state methods allow for the study of large scale localized systems. Moreover, the correlation functions we use are directly accessible in a range of experimental settings including cold atoms.
372 - Abhisek Samanta , Kedar Damle , 2020
Some interacting disordered many-body systems are unable to thermalize when the quenched disorder becomes larger than a threshold value. Although several properties of nonzero energy density eigenstates (in the middle of the many-body spectrum) exhibit a qualitative change across this many-body localization (MBL) transition, many of the commonly-used diagnostics only do so over a broad transition regime. Here, we provide evidence that the transition can be located precisely even at modest system sizes by sharply-defined changes in the distribution of extremal eigenvalues of the reduced density matrix of subsystems. In particular, our results suggest that $p* = lim_{lambda_2 rightarrow ln(2)^{+}}P_2(lambda_2)$, where $P_2(lambda_2)$ is the probability distribution of the second lowest entanglement eigenvalue $lambda_2$, behaves as an order-parameter for the MBL phase: $p*> 0$ in the MBL phase, while $p* = 0$ in the ergodic phase with thermalization. Thus, in the MBL phase, there is a nonzero probability that a subsystem is entangled with the rest of the system only via the entanglement of one subsystem qubit with degrees of freedom outside the region. In contrast, this probability vanishes in the thermal phase.
In this work we probe the dynamics of the particle-hole symmetric many-body localized (MBL) phase. We provide numerical evidence that it can be characterized by an algebraic propagation of both entanglement and charge, unlike in the conventional MBL case. We explain the mechanism of this anomalous diffusion through a formation of bound states, which coherently propagate via long-range resonances. By projecting onto the two-particle sector of the particle-hole symmetric model, we show that the formation and observed subdiffusive dynamics is a consequence of an interplay between symmetry and interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا