Do you want to publish a course? Click here

Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz

128   0   0.0 ( 0 )
 Added by Thomas Holoien
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the objects evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galaxy SDSS J171955.84+414049.4 on UT 2017 July 27. The transient peaked at an absolute $B$-band magnitude of $M_{B,{rm peak}}=-22.81$, corresponding to a bolometric luminosity of $L_{rm bol,peak}=8.3times10^{44}$ ergs s$^{-1}$, and exhibited late-time ultraviolet emission with a total emitted energy of $E_{rm tot}=(1.36pm0.08)times10^{52}$ ergs. This late-time light is accompanied by increasing X-ray emission that becomes softer as it brightens. ASASSN-17jz exhibited a large number of spectral emission lines most commonly seen in active galactic nuclei (AGNs) with little evidence of evolution, except for the Balmer lines, which became fainter and broader over time. We consider various physical scenarios for the origin of the transient, including those involving supernovae (SNe), tidal disruption event (TDEs), AGN outbursts, and ANTs. We find that the most likely explanation is that ASASSN-17jz was an SN IIn occurring in or near the disk of an existing AGN, and that the late-time emission is caused by the AGN transitioning to a more active state.



rate research

Read More

We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from $-$30 to 275 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite (TESS) data, we determine that the ANT began to brighten on 2020 June 23.3 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 29.5 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity of $L = (3.15 pm 0.04) times 10^{43}$ erg s$^{-1}$. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to $L_{x} sim 1.5 times 10^{42}$ erg s$^{-1}$ and then slowly declined over time. The X-ray emission is well-fit by a power law with a photon index of $Gamma sim 2.3 - 2.6$. Both the optical and near infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events (TDEs) and active galactic nuclei (AGNs), it cannot be definitively classified with current data.
Some transients, although classified as novae based on their maximum and early decline optical spectra, cast doubts on their true nature and whether nova impostors might exist. We monitored a candidate nova which displayed a distinctly unusual light curve at maximum and early decline through optical spectroscopy (3000-10000 AA, 500<R<100000) complemented with Swift UV and AAVSO optical photometry. We use the spectral line series to characterize the ejecta dynamics, structure, and mass. We found that the ejecta are in free ballistic expansion and structured as typical of classical novae. However, their derived mass is at least an order of magnitude larger than the typical ejecta masses obtained for classical novae. Specifically, we found M$_{ej}simeq$9$times$10$^{-3}$ M$_odot$ independent of the distance for a filling factor $varepsilon$=1. By constraining the distance we derived $varepsilon$ in the range 0.08-0.10, giving a mass 7$times$10$^{-4}lesssim$ M$_{ej}lesssim$9$times$10$^{-4}$ M$_odot$. The nebular spectrum, characterized by unusually strong coronal emission lines, confines the ionizing source energy to the range 20-250 eV, possibly peaking in the range 75-100 or 75-150 eV. We link this source to other slow novae which showed similar behavior and suggest that they might form a distinct physical sub-group. They may result from a classical nova explosion occurring on a very low mass white dwarf or be impostors for an entirely different type of transient.
The progenitors of astronomical transients are linked to a specific stellar population and galactic environment, and observing their host galaxies hence constrains the physical nature of the transient itself. Here, we use imaging from the Hubble Space Telescope, and spatially-resolved, medium resolution spectroscopy from the Very Large Telescope obtained with X-Shooter and MUSE to study the host of the very luminous transient ASASSN-15lh. The dominant stellar population at the transient site is old (around 1 to 2 Gyr), without signs of recent star-formation. We also detect emission from ionized gas, originating from three different, time-invariable, narrow components of collisionally-excited metal and Balmer lines. The ratios of emission lines in the Baldwin-Phillips-Terlevich diagnostic diagram indicate that the ionization source is a weak Active Galactic Nucleus with a black hole mass of $M_bullet = 5_{-3}^{+8}cdot10^{8} M_odot$, derived through the $M_bullet$-$sigma$ relation. The narrow line components show spatial and velocity offsets on scales of 1 kpc and 500 km/s, respectively; these offsets are best explained by gas kinematics in the narrow-line region. The location of the central component, which we argue is also the position of the supermassive black hole, aligns with that of the transient within an uncertainty of 170 pc. Using this positional coincidence as well as other similarities with the hosts of Tidal Disruption Events, we strengthen the argument that the transient emission observed as ASASSN-15lh is related to the disruption of a star around a supermassive black hole, most probably spinning with a Kerr parameter $a_bulletgtrsim0.5$.
We present the discovery that ASASSN-14ko is a periodically flaring AGN at the center of the galaxy ESO 253-G003. At the time of its discovery by the All-Sky Automated Survey for Supernovae (ASAS-SN), it was classified as a supernova close to the nucleus. The subsequent six years of V- and g-band ASAS-SN observations reveal that ASASSN-14ko has nuclear flares occurring at regular intervals. The seventeen observed outbursts show evidence of a decreasing period over time, with a mean period of $P_0 = 114.2 pm 0.4$ days and a period derivative of $dot{P} = -0.0017pm0.0003$. The most recent outburst in May 2020, which took place as predicted, exhibited spectroscopic changes during the rise and a had a UV bright, blackbody spectral energy distribution similar to tidal disruption events (TDEs). The X-ray flux decreased by a factor of 4 at the beginning of the outburst and then returned to its quiescent flux after ~8 days. TESS observed an outburst during Sectors 4-6, revealing a rise time of $5.60 pm 0.05$ days in the optical and a decline that is best fit with an exponential model. We discuss several possible scenarios to explain ASASSN-14kos periodic outbursts, but currently favor a repeated partial TDE. The next outbursts should peak in the optical on UT 2020-09-7.4$ pm $1.1 and UT 2020-12-26.5$ pm $1.4.
We present photometric and spectroscopic follow-up observations of the highly luminous Type Ibn supernova ASASSN-14ms, which was discovered on UT 2014-12-26.61 at $m_V sim 16.5$. With a peak absolute $V$-band magnitude brighter than $-20.5$, a peak bolometric luminosity of $1.7 times 10^{44}$ ergs s$^{-1}$, and a total radiated energy of $2.1 times 10^{50}$ ergs, ASASSN-14ms is one of the most luminous Type Ibn supernovae yet discovered. In simple models, the most likely power source for this event is a combination of the radioactive decay of $^{56}$Ni and $^{56}$Co at late times and the interaction of supernova ejecta with the progenitors circumstellar medium at early times, although we cannot rule out the possibility of a magnetar-powered light curve. The presence of a dense circumstellar medium is indicated by the intermediate-width He I features in the spectra. The faint ($m_g sim 21.6$) host galaxy SDSS J130408.52+521846.4 has an oxygen abundance below $12+log(O/H) lesssim 8.3$, a stellar mass of $M_* sim 2.6 times 10^8 M_{odot}$, and a star formation rate of $textrm{SFR} sim 0.02$ $M_{odot}$ yr$^{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا