Do you want to publish a course? Click here

Bias in cubic Gauss sums: Pattersons conjecture

144   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $W$ be a smooth test function with compact support in $(0,infty)$. Conditional on the Generalized Riemann Hypothesis for Hecke $L$-functions over $mathbb{Q}(omega)$, we prove that $$sum_{p equiv 1 pmod{3}} frac{1}{2 sqrt{p}} cdot Big ( sum_{x pmod{p}} e^{2pi i x^3 / p} Big ) W Big ( frac{p}{X} Big ) sim frac{(2pi)^{2/3}}{3 Gamma(tfrac 23)} int_{0}^{infty} W(x) x^{-1/6} dx cdot frac{X^{5/6}}{log X},$$ as $X rightarrow infty$ and $p$ runs over primes. This explains a well-known numerical bias in the distribution of cubic Gauss sums first observed by Kummer in 1846 and confirms (conditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson from 1978. There are two important byproducts of our proof. The first is an explicit level aspect Voronoi summation formula for cubic Gauss sums, extending computations of Patterson and Yoshimoto. Secondly, we show that Heath-Browns cubic large sieve is sharp up to factors of $X^{o(1)}$ under the Generalized Riemann Hypothesis. This disproves the popular belief that the cubic large sieve can be improved. An important ingredient in our proof is a dispersion estimate for cubic Gauss sums. It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of the fundamental reasons why our result is conditional.



rate research

Read More

204 - Koji Momihara 2020
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the multiplicative character involved. A complete solution to the problem of evaluating index $2$ Gauss sums was given by Yang and Xia~(2010). In particular, it is known that some nonzero integral powers of the Gauss sums in this case are in quadratic fields. On the other hand, Chowla~(1962), McEliece~(1974), Evans~(1977, 1981) and Aoki~(1997, 2004, 2012) studied {it pure} Gauss sums, some nonzero integral powers of which are in the field of rational numbers. In this paper, we study Gauss sums, some integral powers of which are in quadratic fields. This class of Gauss sums is a generalization of index $2$ Gauss sums and an extension of pure Gauss sums to quadratic fields.
Let K be a cubic number field. In this paper, we study the Ramanujan sums c_{J}(I), where I and J are integral ideals in O_{K}. The asymptotic behaviour of sums of c_{J}(I) over both I and J is investigated.
We establish an analogue of the classical Polya-Vinogradov inequality for $GL(2, F_p)$, where $p$ is a prime. In the process, we compute the `singular Gauss sums for $GL(2, F_p)$. As an application, we show that the collection of elements in $GL(2,Z)$ whose reduction modulo $p$ are of maximal order in $GL(2, F_p)$ and whose matrix entries are bounded by $x$ has the expected size as soon as $xgg p^{1/2+ep}$ for any $ep>0$. In particular, there exist elements in $GL(2,Z)$ with matrix entries that are of the order $O(p^{1/2+ep})$ whose reduction modulo $p$ are primitive elements.
89 - Weiping Wang , Ce Xu 2021
By using various expansions of the parametric digamma function and the method of residue computations, we study three variants of the linear Euler sums, related Hoffmans double $t$-values and Kaneko-Tsumuras double $T$-values, and establish several symmetric extensions of the Kaneko-Tsumura conjecture. Some special cases are discussed in detail to determine the coefficients of involved mathematical constants in the evaluations. In particular, it can be found that several general convolution identities on the classical Bernoulli numbers and Genocchi numbers are required in this study, and they are verified by the derivative polynomials of hyperbolic tangent.
We prove Manins conjecture over imaginary quadratic number fields for a cubic surface with a singularity of type E_6.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا