Do you want to publish a course? Click here

Non-Debye relaxations: The characteristic exponent in the excess wings model

93   0   0.0 ( 0 )
 Added by Katarzyna G\\'orska
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The characteristic (Laplace or Levy) exponents uniquely characterize infinitely divisible probability distributions. Although of purely mathematical origin they appear to be uniquely associated with the memory functions present in evolution equations which govern the course of such physical phenomena like non-Debye relaxations or anomalous diffusion. Commonly accepted procedure to mimic memory effects is to make basic equations time smeared, i.e., nonlocal in time. This is modeled either through the convolution of memory functions with those describing relaxation/diffusion or, alternatively, through the time smearing of time derivatives. Intuitive expectations say that such introduced time smearings should be physically equivalent. This leads to the conclusion that both kinds of so far introduced memory functions form a twin structure familiar to mathematicians for a long time and known as the Sonine pair. As an illustration of the proposed scheme we consider the excess wings model of non-Debye relaxations, determine its evolution equations and discuss properties of the solutions.



rate research

Read More

For the Langevin model of the dynamics of a Brownian particle with perturbations orthogonal to its current velocity, in a regime when the particle velocity modulus becomes constant, an equation for the characteristic function $psi (t,lambda )=Mleft[exp (lambda ,x(t))/V={rm v}(0)right]$ of the position $x(t)$ of the Brownian particle. The obtained results confirm the conclusion that the model of the dynamics of a Brownian particle, which constructed on the basis of an unconventional physical interpretation of the Langevin equations, i. e. stochastic equations with orthogonal influences, leads to the interpretation of an ensemble of Brownian particles as a system with wave properties. These results are consistent with the previously obtained conclusions that, with a certain agreement of the coefficients in the original stochastic equation, for small random influences and friction, the Langevin equations lead to a description of the probability density of the position of a particle based on wave equations. For large random influences and friction, the probability density is a solution to the diffusion equation, with a diffusion coefficient that is lower than in the classical diffusion model.
179 - Eldad Bettelheim 2015
We give integral equations for the generating function of the cummulants of the work done in a quench for the Kondo model in the thermodynamic limit. Our approach is based on an extension of the thermodynamic Bethe ansatz to non-equilibrium situations. This extension is made possible by use of a large $N$ expansion of the overlap between Bethe states. In particular, we make use of the Slavnov determinant formula for such overlaps, passing to a function-space representation of the Slavnov matrix . We leave the analysis of the resulting integral equations to future work.
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and the $O(n)$-model in the limit $ntoinfty$. The stationary state of the quantum dynamics is shown to be a non-equilibrium state. The quantum spherical and the quantum $O(n)$-model for $ntoinfty$ are in the same dynamical universality class. The long-time behaviour of single-time and two-time correlation and response functions is analysed and the universal exponents which characterise quantum coarsening and quantum ageing are derived. The importance of the non-Markovian long-time memory of the quantum noise is elucidated by comparing it with an effective Markovian noise having the same scaling behaviour and with the case of non-equilibrium classical dynamics.
The well-known Vicsek model describes the dynamics of a flock of self-propelled particles (SPPs). Surprisingly, there is no direct measure of the chaotic behavior of such systems. Here, we discuss the dynamical phase transition present in Vicsek systems in light of the largest Lyapunov exponent (LLE), which is numerically computed by following the dynamical evolution in tangent space for up to one million SPPs. As discontinuities in the neighbor weighting factor hinder the computations, we propose a smooth form of the Vicsek model. We find that there is chaotic behavior in the disordered phase, which supports the claim that the LLE can be useful as an indicator of phase transitions even for this out-of-equilibrium system.
We study numerically the two-point correlation functions of height functions in the six-vertex model with domain wall boundary conditions. The correlation functions and the height functions are computed by the Markov chain Monte-Carlo algorithm. Particular attention is paid to the free fermionic point ($Delta=0$), for which the correlation functions are obtained analytically in the thermodynamic limit. A good agreement of the exact and numerical results for the free fermionic point allows us to extend calculations to the disordered ($|Delta|<1$) phase and to monitor the logarithm-like behavior of correlation functions there. For the antiferroelectric ($Delta<-1$) phase, the exponential decrease of correlation functions is observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا