No Arabic abstract
The Bidirectional Encoder Representations from Transformers (BERT) model has achieved the state-of-the-art performance for many natural language processing (NLP) tasks. Yet, limited research has been contributed to studying its effectiveness when the target domain is shifted from the pre-training corpora, for example, for biomedical or clinical NLP applications. In this paper, we applied it to a widely studied a hospital information extraction (IE) task and analyzed its performance under the transfer learning setting. Our application became the new state-of-the-art result by a clear margin, compared with a range of existing IE models. Specifically, on this nursing handover data set, the macro-average F1 score from our model was 0.438, whilst the previous best deep learning models had 0.416. In conclusion, we showed that BERT based pre-training models can be transferred to health-related documents under mild conditions and with a proper fine-tuning process.
Clinical trials predicate subject eligibility on a diversity of criteria ranging from patient demographics to food allergies. Trials post their requirements as semantically complex, unstructured free-text. Formalizing trial criteria to a computer-interpretable syntax would facilitate eligibility determination. In this paper, we investigate an information extraction (IE) approach for grounding criteria from trials in ClinicalTrials(dot)gov to a shared knowledge base. We frame the problem as a novel knowledge base population task, and implement a solution combining machine learning and context free grammar. To our knowledge, this work is the first criteria extraction system to apply attention-based conditional random field architecture for named entity recognition (NER), and word2vec embedding clustering for named entity linking (NEL). We release the resources and core components of our system on GitHub at https://github.com/facebookresearch/Clinical-Trial-Parser. Finally, we report our per module and end to end performances; we conclude that our system is competitive with Criteria2Query, which we view as the current state-of-the-art in criteria extraction.
Embedding acoustic information into fixed length representations is of interest for a whole range of applications in speech and audio technology. Two novel unsupervised approaches to generate acoustic embeddings by modelling of acoustic context are proposed. The first approach is a contextual joint factor synthesis encoder, where the encoder in an encoder/decoder framework is trained to extract joint factors from surrounding audio frames to best generate the target output. The second approach is a contextual joint factor analysis encoder, where the encoder is trained to analyse joint factors from the source signal that correlates best with the neighbouring audio. To evaluate the effectiveness of our approaches compared to prior work, two tasks are conducted -- phone classification and speaker recognition -- and test on different TIMIT data sets. Experimental results show that one of the proposed approaches outperforms phone classification baselines, yielding a classification accuracy of 74.1%. When using additional out-of-domain data for training, an additional 3% improvements can be obtained, for both for phone classification and speaker recognition tasks.
When the meaning of a phrase cannot be inferred from the individual meanings of its words (e.g., hot dog), that phrase is said to be non-compositional. Automatic compositionality detection in multi-word phrases is critical in any application of semantic processing, such as search engines; failing to detect non-compositional phrases can hurt system effectiveness notably. Existing research treats phrases as either compositional or non-compositional in a deterministic manner. In this paper, we operationalize the viewpoint that compositionality is contextual rather than deterministic, i.e., that whether a phrase is compositional or non-compositional depends on its context. For example, the phrase `green card is compositional when referring to a green colored card, whereas it is non-compositional when meaning permanent residence authorization. We address the challenge of detecting this type of contextual compositionality as follows: given a multi-word phrase, we enrich the word embedding representing its semantics with evidence about its global context (terms it often collocates with) as well as its local context (narratives where that phrase is used, which we call usage scenarios). We further extend this representation with information extracted from external knowledge bases. The resulting representation incorporates both localized context and more general usage of the phrase and allows to detect its compositionality in a non-deterministic and contextual way. Empirical evaluation of our model on a dataset of phrase compositionality, manually collected by crowdsourcing contextual compositionality assessments, shows that our model outperforms state-of-the-art baselines notably on detecting phrase compositionality.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
Clinical case reports are written descriptions of the unique aspects of a particular clinical case, playing an essential role in sharing clinical experiences about atypical disease phenotypes and new therapies. However, to our knowledge, there has been no attempt to develop an end-to-end system to annotate, index, or otherwise curate these reports. In this paper, we propose a novel computational resource platform, CREATe, for extracting, indexing, and querying the contents of clinical case reports. CREATe fosters an environment of sustainable resource support and discovery, enabling researchers to overcome the challenges of information science. An online video of the demonstration can be viewed at https://youtu.be/Q8owBQYTjDc.