Do you want to publish a course? Click here

Learning Conceptual-Contextual Embeddings for Medical Text

79   0   0.0 ( 0 )
 Added by Xiao Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.



rate research

Read More

Pre-trained word embeddings are the primary method for transfer learning in several Natural Language Processing (NLP) tasks. Recent works have focused on using unsupervised techniques such as language modeling to obtain these embeddings. In contrast, this work focuses on extracting representations from multiple pre-trained supervised models, which enriches word embeddings with task and domain specific knowledge. Experiments performed in cross-task, cross-domain and cross-lingual settings indicate that such supervised embeddings are helpful, especially in the low-resource setting, but the extent of gains is dependent on the nature of the task and domain. We make our code publicly available.
212 - Yanpei Shi , Thomas Hain 2019
Embedding acoustic information into fixed length representations is of interest for a whole range of applications in speech and audio technology. Two novel unsupervised approaches to generate acoustic embeddings by modelling of acoustic context are proposed. The first approach is a contextual joint factor synthesis encoder, where the encoder in an encoder/decoder framework is trained to extract joint factors from surrounding audio frames to best generate the target output. The second approach is a contextual joint factor analysis encoder, where the encoder is trained to analyse joint factors from the source signal that correlates best with the neighbouring audio. To evaluate the effectiveness of our approaches compared to prior work, two tasks are conducted -- phone classification and speaker recognition -- and test on different TIMIT data sets. Experimental results show that one of the proposed approaches outperforms phone classification baselines, yielding a classification accuracy of 74.1%. When using additional out-of-domain data for training, an additional 3% improvements can be obtained, for both for phone classification and speaker recognition tasks.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavailable for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
End-to-end acoustic-to-word speech recognition models have recently gained popularity because they are easy to train, scale well to large amounts of training data, and do not require a lexicon. In addition, word models may also be easier to integrate with downstream tasks such as spoken language understanding, because inference (search) is much simplified compared to phoneme, character or any other sort of sub-word units. In this paper, we describe methods to construct contextual acoustic word embeddings directly from a supervised sequence-to-sequence acoustic-to-word speech recognition model using the learned attention distribution. On a suite of 16 standard sentence evaluation tasks, our embeddings show competitive performance against a word2vec model trained on the speech transcriptions. In addition, we evaluate these embeddings on a spoken language understanding task, and observe that our embeddings match the performance of text-based embeddings in a pipeline of first performing speech recognition and then constructing word embeddings from transcriptions.
The current dominance of deep neural networks in natural language processing is based on contextual embeddings such as ELMo, BERT, and BERT derivatives. Most existing work focuses on English; in contrast, we present here the first multilingual empirical comparison of two ELMo and several monolingual and multilingual BERT models using 14 tasks in nine languages. In monolingual settings, our analysis shows that monolingual BERT models generally dominate, with a few exceptions such as the dependency parsing task, where they are not competitive with ELMo models trained on large corpora. In cross-lingual settings, BERT models trained on only a few languages mostly do best, closely followed by massively multilingual BERT models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا