No Arabic abstract
Under a general categorical procedure for the extension of dual equivalences as presented in this papers predecessor, a new algebraically defined category is established that is dually equivalent to the category $bf LKHaus$ of locally compact Hausdorff spaces and continuous maps, with the dual equivalence extending a Stone-type duality for the category of extremally disconnected locally compact Hausdorff spaces and continuous maps. The new category is then shown to be isomorphic to the category $bf CLCA$ of complete local contact algebras and suitable morphisms. Thereby, a new proof is presented for the equivalence ${bf LKHaus}simeq{bf CLCA}^{rm op}$ that was obtained by the first author more than a decade ago. Unlike the morphisms of $bf CLCA$, the morphisms of the new category and their composition law are very natural and easy to handle.
Propounding a general categorical framework for the extension of dualities, we present a new proof of the de Vries Duality Theorem for the category $bf KHaus$ of compact Hausdorff spaces and their continuous maps, as an extension of a restricted Stone duality. Then, applying a dualization of the categorical framework to the de Vries duality, we give an alternative proof of the extension of the de Vries duality to the category $bf Tych$ of Tychonoff spaces that was provided by Bezhanishvili, Morandi and Olberding. In the process of doing so, we obtain new duality theorems for both categories, $bf{KHaus}$ and $bf Tych$.
This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finettis representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one.
Internal preneighbourhood spaces were first conceived inside any finitely complete category with finite coproducts and proper factorisation structure in my earlier paper. In this paper a closure operation is introduced on internal preneighbourhood spaces and investigated along with closed morphisms and its close allies. Analogues of several well known classes of topological spaces for preneighbourhood spaces are investigated. The approach via preneighbourhood systems is shown to be more general than the closure operators and conveniently allows to identify properties of classes of morphisms which are independent of continuity of morphisms with respect to closure operators.
Profinite algebras are the residually finite compact algebras, whose underlying topological spaces are Stone spaces. We introduce Stone pseudovarieties, that is, classes of Stone topological algebras of a fixed signature that are closed under taking Stone quotients, closed subalgebras and finite direct products. Looking at Stone spaces as the dual spaces of Boolean algebras, we find a simple characterization of when the dual space admits a natural structure of topological algebra. This provides a new approach to duality theory which, in the case of a Stone signature, culminates in the proof that a Stone quotient of a Stone topological algebra that is residually in a given Stone pseudovariety is also residually in it, thereby extending the corresponding result of M. Gehrke for the Stone pseudovariety of all finite algebras over discrete signatures. The residual closure of a Stone pseudovariety is thus a Stone pseudovariety, and these are precisely the Stone analogues of varieties. A Birkhoff type theorem for residually closed Stone varieties is also established.
Given a continuous monadic functor T in the category of Tychonov spaces for each discrete topological semigroup X we extend the semigroup operation of X to a right-topological semigroup operation on TX whose topological center contains the dense subsemigroup of all elements of TX that have finite support.