Do you want to publish a course? Click here

Categorical Extension of Dualities: From Stone to de Vries and Beyond, I

138   0   0.0 ( 0 )
 Added by Georgi Dimov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Propounding a general categorical framework for the extension of dualities, we present a new proof of the de Vries Duality Theorem for the category $bf KHaus$ of compact Hausdorff spaces and their continuous maps, as an extension of a restricted Stone duality. Then, applying a dualization of the categorical framework to the de Vries duality, we give an alternative proof of the extension of the de Vries duality to the category $bf Tych$ of Tychonoff spaces that was provided by Bezhanishvili, Morandi and Olberding. In the process of doing so, we obtain new duality theorems for both categories, $bf{KHaus}$ and $bf Tych$.



rate research

Read More

Under a general categorical procedure for the extension of dual equivalences as presented in this papers predecessor, a new algebraically defined category is established that is dually equivalent to the category $bf LKHaus$ of locally compact Hausdorff spaces and continuous maps, with the dual equivalence extending a Stone-type duality for the category of extremally disconnected locally compact Hausdorff spaces and continuous maps. The new category is then shown to be isomorphic to the category $bf CLCA$ of complete local contact algebras and suitable morphisms. Thereby, a new proof is presented for the equivalence ${bf LKHaus}simeq{bf CLCA}^{rm op}$ that was obtained by the first author more than a decade ago. Unlike the morphisms of $bf CLCA$, the morphisms of the new category and their composition law are very natural and easy to handle.
The notions of a {em 2-precontact space}/ and a {em 2-contact space}/ are introduced. Using them, new representation theorems for precontact and contact algebras are proved. It is shown that there are bijective correspondences between such kinds of algebras and such kinds of spaces. As applications of the obtained results, we get new connect
In [G. Dimov and E. Ivanova-Dimova, Two extensions of the Stone Duality to the category of zero-dimensional Hausdorff spaces, arXiv:1901.04537v4, 1--33], extending the Stone Duality Theorem, we proved two duality theorems for the category ZDHaus of zero-dimensional Hausdorff spaces and continuous maps. Now we derive from them the extension of the Stone Duality Theorem to the category BooleSp of zero-dimensional locally compact Hausdorff spaces and continuous maps obtained in [G. Dimov, Some generalizations of the Stone Duality Theorem, Publicationes Mathematicae Debrecen, 80 (2012), 255--293], as well as two new duality theorems for the category BooleSp.
Applying a general categorical construction for the extension of dualities, we present a new proof of the Fedorchuk duality between the category of compact Hausdorff spaces with their quasi-open mappings and the category of complete normal contact algebras with suprema-preserving Boolean homomorphisms which reflect the contact relation.
We prove a new duality theorem for the category of precontact algebras which implies the Stone Duality Theorem, its connected version obtained in arXiv:1508.02220v3, 1-44 (to appear in Topology Appl.), the recent duality theorems of Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., Venema, Y. and Goldblatt, R. and Grice, M, and some new duality theorems for the category of contact algebras and for the category of complete contact algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا