No Arabic abstract
Recent years have produced a variety of learning based methods in the context of computer vision and robotics. Most of the recently proposed methods are based on deep learning, which require very large amounts of data compared to traditional methods. The performance of the deep learning methods are largely dependent on the data distribution they were trained on, and it is important to use data from the robots actual operating domain during training. Therefore, it is not possible to rely on pre-built, generic datasets when deploying robots in real environments, creating a need for efficient data collection and annotation in the specific operating conditions the robots will operate in. The challenge is then: how do we reduce the cost of obtaining such datasets to a point where we can easily deploy our robots in new conditions, environments and to support new sensors? As an answer to this question, we propose a data annotation pipeline based on SLAM, 3D reconstruction, and 3D-to-2D geometry. The pipeline allows creating 3D and 2D bounding boxes, along with per-pixel annotations of arbitrary objects without needing accurate 3D models of the objects prior to data collection and annotation. Our results showcase almost 90% Intersection-over-Union (IoU) agreement on both semantic segmentation and 2D bounding box detection across a variety of objects and scenes, while speeding up the annotation process by several orders of magnitude compared to traditional manual annotation.
We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to disentangle these components without supervision, we use the fact that many object categories have, at least in principle, a symmetric structure. We show that reasoning about illumination allows us to exploit the underlying object symmetry even if the appearance is not symmetric due to shading. Furthermore, we model objects that are probably, but not certainly, symmetric by predicting a symmetry probability map, learned end-to-end with the other components of the model. Our experiments show that this method can recover very accurately the 3D shape of human faces, cat faces and cars from single-view images, without any supervision or a prior shape model. On benchmarks, we demonstrate superior accuracy compared to another method that uses supervision at the level of 2D image correspondences.
3D shape completion for real data is important but challenging, since partial point clouds acquired by real-world sensors are usually sparse, noisy and unaligned. Different from previous methods, we address the problem of learning 3D complete shape from unaligned and real-world partial point clouds. To this end, we propose a weakly-supervised method to estimate both 3D canonical shape and 6-DoF pose for alignment, given multiple partial observations associated with the same instance. The network jointly optimizes canonical shapes and poses with multi-view geometry constraints during training, and can infer the complete shape given a single partial point cloud. Moreover, learned pose estimation can facilitate partial point cloud registration. Experiments on both synthetic and real data show that it is feasible and promising to learn 3D shape completion through large-scale data without shape and pose supervision.
Reconstructing high-fidelity 3D objects from sparse, partial observation is of crucial importance for various applications in computer vision, robotics, and graphics. While recent neural implicit modeling methods show promising results on synthetic or dense datasets, they perform poorly on real-world data that is sparse and noisy. This paper analyzes the root cause of such deficient performance of a popular neural implicit model. We discover that the limitations are due to highly complicated objectives, lack of regularization, and poor initialization. To overcome these issues, we introduce two simple yet effective modifications: (i) a deep encoder that provides a better and more stable initialization for latent code optimization; and (ii) a deep discriminator that serves as a prior model to boost the fidelity of the shape. We evaluate our approach on two real-wold self-driving datasets and show superior performance over state-of-the-art 3D object reconstruction methods.
Synthesising 3D facial motion from speech is a crucial problem manifesting in a multitude of applications such as computer games and movies. Recently proposed methods tackle this problem in controlled conditions of speech. In this paper, we introduce the first methodology for 3D facial motion synthesis from speech captured in arbitrary recording conditions (in-the-wild) and independent of the speaker. For our purposes, we captured 4D sequences of people uttering 500 words, contained in the Lip Reading Words (LRW) a publicly available large-scale in-the-wild dataset, and built a set of 3D blendshapes appropriate for speech. We correlate the 3D shape parameters of the speech blendshapes to the LRW audio samples by means of a novel time-warping technique, named Deep Canonical Attentional Warping (DCAW), that can simultaneously learn hierarchical non-linear representations and a warping path in an end-to-end manner. We thoroughly evaluate our proposed methods, and show the ability of a deep learning model to synthesise 3D facial motion in handling different speakers and continuous speech signals in uncontrolled conditions.
Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single in-the-wild image. Nevertheless, to the best of our knowledge, there is no method which can produce high-resolution photorealistic 3D faces from in-the-wild images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce AvatarMe, the first method that is able to reconstruct photorealistic 3D faces from a single in-the-wild image with an increasing level of detail. To achieve this, we capture a large dataset of facial shape and reflectance and build on a state-of-the-art 3D texture and shape reconstruction method and successively refine its results, while generating the per-pixel diffuse and specular components that are required for realistic rendering. As we demonstrate in a series of qualitative and quantitative experiments, AvatarMe outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image that, for the first time, bridges the uncanny valley.