No Arabic abstract
In this work, global search for crystal structures of ternary Mg-Sc-H hydrides (Mg$_x$Sc$_y$H$_z$) under high pressure ($100 le P le 200$ GPa) were performed using the evolutionary algorithm and first-principles calculations. Based on them, we computed the thermodynamic convex hull and pressure-dependent phase diagram of Mg$_x$Sc$_y$H$_z$ for $z/(x+y) < 4$. We have identified the stable crystal structures of four thermodynamically stable compounds with the higher hydrogen content, i.e., $Rbar{3}m$-MgScH$_{6}$, $C2/m$-Mg$_{2}$ScH$_{10}$, $Immm$-MgSc$_{2}$H$_{9}$ and $Pmbar{3}m$-Mg(ScH$_{4}$)$_{3}$. Their superconducting transition temperatures were computationally predicted by the McMillan-Allen-Dynes formula combined with first-principles phonon calculations. They were found to exhibit superconductivity; among them, $Rbar{3}m$-MgScH$_{6}$ was predicted to have the highest $T_{c}$ (i.e. 23.34 K) at 200 GPa.
Motivated by recent discovery of yttrium-based high-temperature ternary superconducting hydrides (e.g., CaYH$_{12}$, LaYH$_{12}$, and ScYH$_{6}$), we have employed evolutionary algorithm and first-principles calculations to comprehensively examine the structural stability and superconductivity of the YMgH$_{x}$ system at high pressure. The hydrogen content $x$ and the pressure are both important factors in the stability of these candidate structures. We find that the stability of hydrogen-rich materials frequently necessitates higher pressure. For instance, the pressures to stabilize $P4/mmm$-YMgH$_{8}$ and $Cmmm$-YMgH$_{12}$ are both more than 250 GPa. Hydrogen-less materials, such as $I4_{1}/amd$-YMgH$_{2}$ and $P6_{3}/mmc$-YMgH$_{3}$, can be stable at pressures as low as 100 GPa. In addition, we find a metastable structure for YMgH$_{6}$ with the same space group as the $P4/mmm$-YMgH$_{8}$. A metastable sodalite-like face-centered cubic (FCC) structure is also found in YMgH$_{12}$. These four clathrate structures of $P4/mmm$-YMgH$_{6}$, $P4/mmm$-YMgH$_{8}$, $Cmmm$-YMgH$_{12}$, and $Fdbar{3}m$-YMgH$_{12}$ is made up of H14, H18, H24, and H24 cages, respectively, in which the H-H pair exhibits weak covalent bonding. According to phonon calculations, $P4/mmm$-YMgH$_{6}$ and $P4/mmm$-YMgH$_{8}$ require a pressure of 300 GPa to maintain dynamic stability, however $Cmmm$-YMgH$_{12}$ and $Fdbar{3}m$-YMgH$_{12}$ can maintain dynamic stability at pressures of 200 GPa and 250 GPa, respectively. Electron-phonon coupling calculations indicate that they might be potential high-temperature superconductors, with superconductivity intimately linked to the H cage structure. The sodalite structure $Fdbar{3}m$-YMgH$_{12}$ has a $T_mathrm{c}$ value of 190 K and a strong electron-phonon coupling constant of 2.18.
The HfV$_2$Ga$_4$ compound was recently reported to exhibit unusual bulk superconducting properties, with the possibility of multiband behavior. To gain insight into its properties, we performed ab-initio electronic structure calculations based on the Density Functional Theory (DFT). Our results show that the density of states at the Fermi energy is mainly composed by V--$d$ states. The McMillan formula predicts a superconducting critical temperature ($T_{c}$) of approximately $3.9,$K, in excellent agreement with the experimental value at $4.1,$K, indicating that superconductivity in this new compound may be explained by the electron-phonon mechanism. Calculated valence charge density maps clearly show directional bonding between Hf and V atoms with 1D highly populated V-chains, and some ionic character between Hf--Ga and V--Ga bonds. Finally, we have shown that there are electrons occupying two distinct bands at the Fermi level, with different characters, which supports experimental indications of possible multiband superconductivity. Based on the results, we propose the study of a related compound, ScV$_2$Ga$_4$, showing that it has similar electronic properties, but probably with a higher $T_c$ than HfV$_2$Ga$_4$.
We have carried out first principles structural relaxation calculations on the hydrous magnesium silicate Phase A (Mg7Si2O8(OH)6) under high pressures. Our results show that phase A does not undergo any phase transition upto ~ 45 GPa. We find that non-bonded H--H distance reaches a limiting value of 1.85 angstrom at about 45 GPa. The H--H repulsive strain releasing mechanism in Phase A is found to be dramatically different from the hydrogen bond bending one that was proposed by Hofmeister et al1 for Phase B. It is based on the reduction of one of the O-H bond distances with compression.
Very recently (November, 2010, PRB, 82, 180520R) the first 122-like ternary superconductor KxFe2Se2 with enhanced TC ~ 31K has been discovered. This finding has stimulated much activity in search of related materials and triggered the intense studies of their properties. Indeed already in 2010-2011 the superconductivity (TC ~ 27-33K) was also found in the series of new synthesized 122 phases such as CsxFe2Se2, RbxFe2Se2, (TlK)xFeySe2 etc. which have formed today the new family of superconducting iron-based materials without toxic As. Here, using the ab initio FLAPW-GGA method we have predicted for the first time the elastic properties for KFe2Se2 and discussed their interplay with inter-atomic bonding for this system. Our data reveal that the examined phase is relatively soft material. In addition, this system is mechanically stable, adopts considerable elastic anisotropy, and demonstrates brittleness. These conclusions agree with the bonding picture for KFe2Se2, where the inter-atomic bonding is highly anisotropic and includes ionic, covalent and metallic contributions.
We perform a thorough first-principles study on superconductivity in yttrium carbide halide Y$_2$$X_2$C$_2$ ($X$=Cl, Br, I) whose maximum transition temperature ($T_{rm c}$) amounts to $sim$10 K. A detailed analysis on the optimized crystal structures reveals that the Y$_2$C$_2$ blocks are compressed uniaxially upon the halogen substitution from Cl, Br to I, contrary to the monotonic expansion of the lattice vectors. With a nonempirical method based on the density functional theory for superconductors within the conventional phonon mechanism, we successfully reproduce the halogen dependence of $T_{rm c}$. Anomalously enhanced coupling of one C$_2$ libration mode is observed in Y$_2$I$_2$C$_2$, which imply possible departure from the conventional pairing picture. Utilizing the Wannier representation of the electron-phonon coupling, we show that the halogen electronic orbitals and ionic vibrations scarcely contribute to the superconducting pairing. The halogen dependence of this system is hence an indirect effect of the halogen ions through the uniaxial compressive force on the superconducting Y$_2$C$_2$ blocks. We thus establish a quantitatively reliable picture of the superconducting physics of this system, extracting a unique effect of the atomic substitution which is potentially applicable to other superconductors.