Do you want to publish a course? Click here

Reconstruction on Trees and Low-Degree Polynomials

96   0   0.0 ( 0 )
 Added by Frederic Koehler
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, phylogenetic reconstruction, MCMC algorithms, and community detection in random graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves Bayes-optimal performance for the reconstruction problem of predicting the value of the Markov process at the root of the tree from its values at the leaves. Recently, the analysis of low-degree polynomials has emerged as a valuable tool for predicting computational-to-statistical gaps. In this work, we investigate the performance of low-degree polynomials for the reconstruction problem on trees. Perhaps surprisingly, we show that there are simple tree models with $N$ leaves where (1) nontrivial reconstruction of the root value is possible with a simple polynomial time algorithm and with robustness to noise, but not with any polynomial of degree $N^{c}$ for $c > 0$ a constant, and (2) when the tree is unknown and given multiple samples with correlated root assignments, nontrivial reconstruction of the root value is possible with a simple, noise-robust, and computationally efficient SQ (Statistical Query) algorithm but not with any polynomial of degree $N^c$. These results clarify some of the limitations of low-degree polynomials vs. polynomial time algorithms for Bayesian estimation problems. They also complement recent work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief Propagation. We pose related open questions about low-degree polynomials and the Kesten-Stigum threshold.



rate research

Read More

75 - Paul Jung , Jiho Lee , Sam Staton 2018
Motivated by the problem of designing inference-friendly Bayesian nonparametric models in probabilistic programming languages, we introduce a general class of partially exchangeable random arrays which generalizes the notion of hierarchical exchangeability introduced in Austin and Panchenko (2014). We say that our partially exchangeable arrays are DAG-exchangeable since their partially exchangeable structure is governed by a collection of Directed Acyclic Graphs. More specifically, such a random array is indexed by $mathbb{N}^{|V|}$ for some DAG $G=(V,E)$, and its exchangeability structure is governed by the edge set $E$. We prove a representation theorem for such arrays which generalizes the Aldous-Hoover and Austin-Panchenko representation theorems.
171 - M. Formentin , C. Kuelske 2009
We give a criterion of the form Q(d)c(M)<1 for the non-reconstructability of tree-indexed q-state Markov chains obtained by broadcasting a signal from the root with a given transition matrix M. Here c(M) is an explicit function, which is convex over the set of Ms with a given invariant distribution, that is defined in terms of a (q-1)-dimensional variational problem over symmetric entropies. Further Q(d) is the expected number of offspring on the Galton-Watson tree. This result is equivalent to proving the extremality of the free boundary condition-Gibbs measure within the corresponding Gibbs-simplex. Our theorem holds for possibly non-reversible M and its proof is based on a general Recursion Formula for expectations of a symmetrized relative entropy function, which invites their use as a Lyapunov function. In the case of the Potts model, the present theorem reproduces earlier results of the authors, with a simplified proof, in the case of the symmetric Ising model (where the argument becomes similar to the approach of Pemantle and Peres) the method produces the correct reconstruction threshold), in the case of the (strongly) asymmetric Ising model where the Kesten-Stigum bound is known to be not sharp the method provides improved numerical bounds.
71 - Wenjian Liu , Ning Ning 2018
In this paper, we consider a broadcasting process in which information is propagated from a given root node on a noisy tree network, and answer the question that whether the symbols at the nth level of the tree contain non-vanishing information of the root as n goes to infinity. Although the reconstruction problem on the tree has been studied in numerous contexts including information theory, mathematical genetics and statistical physics, the existing literatures with rigorous reconstruction thresholds established are very limited. In the remarkable work of Borgs, Chayes, Mossel and Roch (The Kesten-Stigum reconstruction bound is tight for roughly symmetric binary channels), the exact threshold for the reconstruction problem for a binary asymmetric channel on the d-ary tree is establish, provided that the asymmetry is sufficiently small, which is the first exact reconstruction threshold obtained in roughly a decade. In this paper, by means of refined analyses of moment recursion on a weighted version of the magnetization, and concentration investigations, we rigorously give a complete answer to the question of how small it needs to be to establish the tightness of the reconstruction threshold and further determine its asymptotics of large degrees.
This paper considers the asymptotic distribution of the longest edge of the minimal spanning tree and nearest neighbor graph on X_1,...,X_{N_n} where X_1,X_2,... are i.i.d. in Re^2 with distribution F and N_n is independent of the X_i and satisfies N_n/nto_p1. A new approach based on spatial blocking and a locally orthogonal coordinate system is developed to treat cases for which F has unbounded support. The general results are applied to a number of special cases, including elliptically contoured distributions, distributions with independent Weibull-like margins and distributions with parallel level curves.
208 - Egor Kosov 2021
In this paper we study bounds for the total variation distance between two second degree polynomials in normal random variables provided that they essentially depend on at least three variables.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا