No Arabic abstract
Motivated by the problem of designing inference-friendly Bayesian nonparametric models in probabilistic programming languages, we introduce a general class of partially exchangeable random arrays which generalizes the notion of hierarchical exchangeability introduced in Austin and Panchenko (2014). We say that our partially exchangeable arrays are DAG-exchangeable since their partially exchangeable structure is governed by a collection of Directed Acyclic Graphs. More specifically, such a random array is indexed by $mathbb{N}^{|V|}$ for some DAG $G=(V,E)$, and its exchangeability structure is governed by the edge set $E$. We prove a representation theorem for such arrays which generalizes the Aldous-Hoover and Austin-Panchenko representation theorems.
The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this paper, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths covering all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem.
We introduce a structure for the directed acyclic graph (DAG) and a mechanism design based on that structure so that peers can reach consensus at large scale based on proof of work (PoW). We also design a mempool transaction assignment method based on the DAG structure to render negligible the probability that a transaction being processed by more than one miners. The result is a significant scale-up of the capacity without sacrificing security and decentralization.
We develop a Bregman proximal gradient method for structure learning on linear structural causal models. While the problem is non-convex, has high curvature and is in fact NP-hard, Bregman gradient methods allow us to neutralize at least part of the impact of curvature by measuring smoothness against a highly nonlinear kernel. This allows the method to make longer steps and significantly improves convergence. Each iteration requires solving a Bregman proximal step which is convex and efficiently solvable for our particular choice of kernel. We test our method on various synthetic and real data sets.
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the other hand, finiteness is not expressible as an EMSO. For a broad class of random tree models, including Galton-Watson trees with offspring distributions that have full support, we prove the stronger statement that finiteness does not agree up to a null set with any EMSO. We construct a finite tree and a non-null set of infinite trees that cannot be distinguished from each other by any EMSO of given parameters. This is proved via set-pebble Ehrenfeucht games (where an initial colouring round is followed by a given number of pebble rounds).
We study the directed polymer model for general graphs (beyond $mathbb Z^d$) and random walks. We provide sufficient conditions for the existence or non-existence of a weak disorder phase, of an $L^2$ region, and of very strong disorder, in terms of properties of the graph and of the random walk. We study in some detail (biased) random walk on various trees including the Galton Watson trees, and provide a range of other examples that illustrate counter-examples to intuitive extensions of the $mathbb Z^d$/SRW result.