Do you want to publish a course? Click here

Unsupervised topological learning approach of crystal nucleation

119   0   0.0 ( 0 )
 Added by Noel Jakse
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nucleation phenomena commonly observed in our every day life are of fundamental, technological and societal importance in many areas, but some of their most intimate mechanisms remain however to be unravelled. Crystal nucleation, the early stages where the liquid-to-solid transition occurs upon undercooling, initiates at the atomic level on nanometre length and sub-picoseconds time scales and involves complex multidimensional mechanisms with local symmetry breaking that can hardly be observed experimentally in the very details. To reveal their structural features in simulations without a priori, an unsupervised learning approach founded on topological descriptors loaned from persistent homology concepts is proposed. Applied here to monatomic metals, it shows that both translational and orientational ordering always come into play simultaneously when homogeneous nucleation starts in regions with low five-fold symmetry. It also reveals the specificity of the nucleation pathways depending on the element considered, with features beyond the hypothesis of Classical Nucleation Theory.

rate research

Read More

We propose an unsupervised learning methodology build on a Gaussian mixture model computed on topological descriptors from persistent homology, for the structural analysis of materials at the atomic scale. Based only on atomic positions and without textit{a priori} knowledge, our method automatically identifies relevant local atomic structures in a system of interest. Along with a complete description of the procedure, we provide a concrete example of application by analysing large-scale molecular dynamics simulations of bulks crystal and liquid as well as homogeneous nucleation events of elemental Zr at the nose of the time-temperature-transformation curve. This method opens the way to deeper and autonomous studies of structural dependent phenomena occurring at the atomic scale in materials.
The diffraction patterns of crystalline materials with strongly-correlated disorder are characterised by the presence of structured diffuse scattering. Conventional analysis approaches generally seek to interpret this scattering either atomistically or in terms of pairwise (Warren--Cowley) correlation parameters. Here we demonstrate how a mean-field methodology allows efficient fitting of diffuse scattering directly in terms of a microscopic interaction model. In this way the approach gives as its output the underlying physics responsible for correlated disorder. Moreover, the use of a very small number of parameters during fitting renders the approach surprisingly robust to data incompleteness, a particular advantage when seeking to interpret single-crystal diffuse scattering measured in complex sample environments. We use as the basis of our proof-of-concept study a toy model based on strongly-correlated disorder in diammine mercury(II) halides.
140 - Li-Wei Yu , Dong-Ling Deng 2020
Non-Hermitian topological phases bear a number of exotic properties, such as the non-Hermitian skin effect and the breakdown of conventional bulk-boundary correspondence. In this paper, we introduce an unsupervised machine learning approach to classify non-Hermitian topological phases based on diffusion maps, which are widely used in manifold learning. We find that the non-Hermitian skin effect will pose a notable obstacle, rendering the straightforward extension of unsupervised learning approaches to topological phases for Hermitian systems ineffective in clustering non-Hermitian topological phases. Through theoretical analysis and numerical simulations of two prototypical models, we show that this difficulty can be circumvented by choosing the on-site elements of the projective matrix as the input data. Our results provide a valuable guidance for future studies on learning non-Hermitian topological phases in an unsupervised fashion, both in theory and experiment.
A higher-order topological insulator is a new concept of topological states of matter, which is characterized by the emergent boundary states whose dimensionality is lower by more than two compared with that of the bulk, and draws a considerable interest. Yet, its robustness against disorders is still unclear. Here we investigate a phase diagram of higher-order topological insulator phases in a breathing kagome model in the presence of disorders, by using a state-of-the-art machine learning technique. We find that the corner states survive against the finite strength of disorder potential as long as the energy gap is not closed, indicating the stability of the higher-order topological phases against the disorders.
The Landau description of phase transitions relies on the identification of a local order parameter that indicates the onset of a symmetry-breaking phase. In contrast, topological phase transitions evade this paradigm and, as a result, are harder to identify. Recently, machine learning techniques have been shown to be capable of characterizing topological order in the presence of human supervision. Here, we propose an unsupervised approach based on diffusion maps that learns topological phase transitions from raw data without the need of manual feature engineering. Using bare spin configurations as input, the approach is shown to be capable of classifying samples of the two-dimensional XY model by winding number and capture the Berezinskii-Kosterlitz-Thouless transition. We also demonstrate the success of the approach on the Ising gauge theory, another paradigmatic model with topological order. In addition, a connection between the output of diffusion maps and the eigenstates of a quantum-well Hamiltonian is derived. Topological classification via diffusion maps can therefore enable fully unsupervised studies of exotic phases of matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا