No Arabic abstract
Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data. The consequence on clinical practice is that, when lacking results from a randomized trial, medical personnel is left without guidance on what seems to be effective in a real-world scenario. This article showcases a pragmatic methodology to obtain preliminary estimation of treatment effect from observational studies. Our approach was tested on the estimation of treatment effect of the proning maneuver on oxygenation levels, on a cohort of COVID-19 Intensive Care patients. We modeled our study design on a recent RCT for proning (the PROSEVA trial). Linear regression, propensity score models such as blocking and DR-IPW, BART and t
We conducted a pilot study to evaluate the potential and feasibility of back-support exoskeletons to help the caregivers in the Intensive Care Unit (ICU) of the University Hospital of Nancy (France) executing Prone Positioning (PP) maneuvers on patients suffering from severe COVID-19-related Acute Respiratory Distress Syndrome. After comparing four commercial exoskeletons, the Laevo passive exoskeleton was selected and used in the ICU in April 2020. The first volunteers using the Laevo reported very positive feedback and reduction of effort, confirmed by EMG and ECG analysis. Laevo has been since used to physically assist during PP in the ICU of the Hospital of Nancy, following the recrudescence of COVID-19, with an overall positive feedback.
Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an essential treatment. We developed a machine learning algorithm, based on a deep Reinforcement Learning (RL), for continuous management of oxygen flow rate for critical ill patients under intensive care, which can identify the optimal personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical practice. Basically, we modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov decision process. Based on individual patient characteristics and health status, a reinforcement learning based oxygen control policy is learned and real-time recommends the oxygen flow rate to reduce the mortality rate. We assessed the performance of proposed methods through cross validation by using a retrospective cohort of 1,372 critically ill patients with COVID-19 from New York University Langone Health ambulatory care with electronic health records from April 2020 to January 2021. The mean mortality rate under the RL algorithm is lower than standard of care by 2.57% (95% CI: 2.08- 3.06) reduction (P<0.001) from 7.94% under the standard of care to 5.37 % under our algorithm and the averaged recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14-1.42) lower than the rate actually delivered to patients. Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce mortality rate, while saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during the COVID-19 pandemic.
Support vector machine (SVM) is one of the most popular classification algorithms in the machine learning literature. We demonstrate that SVM can be used to balance covariates and estimate average causal effects under the unconfoundedness assumption. Specifically, we adapt the SVM classifier as a kernel-based weighting procedure that minimizes the maximum mean discrepancy between the treatment and control groups while simultaneously maximizing effective sample size. We also show that SVM is a continuous relaxation of the quadratic integer program for computing the largest balanced subset, establishing its direct relation to the cardinality matching method. Another important feature of SVM is that the regularization parameter controls the trade-off between covariate balance and effective sample size. As a result, the existing SVM path algorithm can be used to compute the balance-sample size frontier. We characterize the bias of causal effect estimation arising from this trade-off, connecting the proposed SVM procedure to the existing kernel balancing methods. Finally, we conduct simulation and empirical studies to evaluate the performance of the proposed methodology and find that SVM is competitive with the state-of-the-art covariate balancing methods.
Heavy-tailed metrics are common and often critical to product evaluation in the online world. While we may have samples large enough for Central Limit Theorem to kick in, experimentation is challenging due to the wide confidence interval of estimation. We demonstrate the pressure by running A/A simulations with customer spending data from a large-scale Ecommerce site. Solutions are then explored. On one front we address the heavy tail directly and highlight the often ignored nuances of winsorization. In particular, the legitimacy of false positive rate could be at risk. We are further inspired by the idea of robust statistics and introduce Huber regression as a better way to measure treatment effect. On another front covariates from pre-experiment period are exploited. Although they are independent to assignment and potentially explain the variation of response well, concerns are that models are learned against prediction error rather than the bias of parameter. We find the framework of orthogonal learning useful, matching not raw observations but residuals from two predictions, one towards the response and the other towards the assignment. Robust regression is readily integrated, together with cross-fitting. The final design is proven highly effective in driving down variance at the same time controlling bias. It is empowering our daily practice and hopefully can also benefit other applications in the industry.
The COVID-19 pandemic continues to have a devastating global impact, and has placed a tremendous burden on struggling healthcare systems around the world. Given the limited resources, accurate patient triaging and care planning is critical in the fight against COVID-19, and one crucial task within care planning is determining if a patient should be admitted to a hospitals intensive care unit (ICU). Motivated by the need for transparent and trustworthy ICU admission clinical decision support, we introduce COVID-Net Clinical ICU, a neural network for ICU admission prediction based on patient clinical data. Driven by a transparent, trust-centric methodology, the proposed COVID-Net Clinical ICU was built using a clinical dataset from Hospital Sirio-Libanes comprising of 1,925 COVID-19 patients, and is able to predict when a COVID-19 positive patient would require ICU admission with an accuracy of 96.9% to facilitate better care planning for hospitals amidst the on-going pandemic. We conducted system-level insight discovery using a quantitative explainability strategy to study the decision-making impact of different clinical features and gain actionable insights for enhancing predictive performance. We further leveraged a suite of trust quantification metrics to gain deeper insights into the trustworthiness of COVID-Net Clinical ICU. By digging deeper into when and why clinical predictive models makes certain decisions, we can uncover key factors in decision making for critical clinical decision support tasks such as ICU admission prediction and identify the situations under which clinical predictive models can be trusted for greater accountability.