Do you want to publish a course? Click here

GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient Maps

156   0   0.0 ( 0 )
 Added by Riccardo Giubilato
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Simultaneous Localization and Mapping (SLAM) techniques play a key role towards long-term autonomy of mobile robots due to the ability to correct localization errors and produce consistent maps of an environment over time. Contrarily to urban or man-made environments, where the presence of unique objects and structures offer unique cues for localization, the appearance of unstructured natural environments is often ambiguous and self-similar, hindering the performances of loop closure detection. In this paper, we present an approach to improve the robustness of place recognition in the context of a submap-based stereo SLAM based on Gaussian Process Gradient Maps (GPGMaps). GPGMaps embed a continuous representation of the gradients of the local terrain elevation by means of Gaussian Process regression and Structured Kernel Interpolation, given solely noisy elevation measurements. We leverage the image-like structure of GPGMaps to detect loop closures using traditional visual features and Bag of Words. GPGMap matching is performed as an SE(2) alignment to establish loop closure constraints within a pose graph. We evaluate the proposed pipeline on a variety of datasets recorded on Mt. Etna, Sicily and in the Morocco desert, respectively Moon- and Mars-like environments, and we compare the localization performances with state-of-the-art approaches for visual SLAM and visual loop closure detection.



rate research

Read More

In this paper a low-drift monocular SLAM method is proposed targeting indoor scenarios, where monocular SLAM often fails due to the lack of textured surfaces. Our approach decouples rotation and translation estimation of the tracking process to reduce the long-term drift in indoor environments. In order to take full advantage of the available geometric information in the scene, surface normals are predicted by a convolutional neural network from each input RGB image in real-time. First, a drift-free rotation is estimated based on lines and surface normals using spherical mean-shift clustering, leveraging the weak Manhattan World assumption. Then translation is computed from point and line features. Finally, the estimated poses are refined with a map-to-frame optimization strategy. The proposed method outperforms the state of the art on common SLAM benchmarks such as ICL-NUIM and TUM RGB-D.
107 - Xin Wei , Jixin Lv , Jie Sun 2021
This paper proposes a 3D LiDAR SLAM algorithm named Ground-SLAM, which exploits grounds in structured multi-floor environments to compress the pose drift mainly caused by LiDAR measurement bias. Ground-SLAM is developed based on the well-known pose graph optimization framework. In the front-end, motion estimation is conducted using LiDAR Odometry (LO) with a novel sensor-centric sliding map introduced, which is maintained by filtering out expired features based on the model of error propagation. At each key-frame, the sliding map is recorded as a local map. The ground nearby is extracted and modelled as an infinite planar landmark in the form of Closest Point (CP) parameterization. Then, ground planes observed at different key-frames are associated, and the ground constraints are fused into the pose graph optimization framework to compress the pose drift of LO. Finally, loop-closure detection is carried out, and the residual error is jointly minimized, which could lead to a globally consistent map. Experimental results demonstrate superior performances in the accuracy of the proposed approach.
The data loss caused by unreliable network seriously impacts the results of remote visual SLAM systems. From our experiment, a loss of less than 1 second of data can cause a visual SLAM algorithm to lose tracking. We present a novel buffering method, ORBBuf, to reduce the impact of data loss on remote visual SLAM systems. We model the buffering problem as an optimization problem by introducing a similarity metric between frames. To solve the buffering problem, we present an efficient greedy-like algorithm to discard the frames that have the least impact on the quality of SLAM results. We implement our ORBBuf method on ROS, a widely used middleware framework. Through an extensive evaluation on real-world scenarios and tens of gigabytes of datasets, we demonstrate that our ORBBuf method can be applied to different state-estimation algorithms (DSO and VINS-Fusion), different sensor data (both monocular images and stereo images), different scenes (both indoor and outdoor), and different network environments (both WiFi networks and 4G networks). Our experimental results indicate that the network losses indeed affect the SLAM results, and our ORBBuf method can reduce the RMSE up to 50 times comparing with the Drop-Oldest and Random buffering methods.
SLAM (Simultaneous Localization And Mapping) seeks to provide a moving agent with real-time self-localization. To achieve real-time speed, SLAM incrementally propagates position estimates. This makes SLAM fast but also makes it vulnerable to local pose estimation failures. As local pose estimation is ill-conditioned, local pose estimation failures happen regularly, making the overall SLAM system brittle. This paper attempts to correct this problem. We note that while local pose estimation is ill-conditioned, pose estimation over longer sequences is well-conditioned. Thus, local pose estimation errors eventually manifest themselves as mapping inconsistencies. When this occurs, we save the current map and activate two new SLAM threads. One processes incoming frames to create a new map and the other, recovery thread, backtracks to link new and old maps together. This creates a Dual-SLAM framework that maintains real-time performance while being robust to local pose estimation failures. Evaluation on benchmark datasets shows Dual-SLAM can reduce failures by a dramatic $88%$.
In the real-life environments, due to the sudden appearance of windows, lights, and objects blocking the light source, the visual SLAM system can easily capture the low-contrast images caused by over-exposure or over-darkness. At this time, the direct method of estimating camera motion based on pixel luminance information is infeasible, and it is often difficult to find enough valid feature points without image processing. This paper proposed HE-SLAM, a new method combining histogram equalization and ORB feature extraction, which can be robust in more scenes, especially in stages with low-contrast images. Because HE-SLAM uses histogram equalization to improve the contrast of images, it can extract enough valid feature points in low-contrast images for subsequent feature matching, keyframe selection, bundle adjustment, and loop closure detection. The proposed HE-SLAM has been tested on the popular datasets (such as KITTI and EuRoc), and the real-time performance and robustness of the system are demonstrated by comparing system runtime and the mean square root error (RMSE) of absolute trajectory error (ATE) with state-of-the-art methods like ORB-SLAM2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا