Do you want to publish a course? Click here

Gibbs posterior inference on a Levy density under discrete sampling

112   0   0.0 ( 0 )
 Added by Ryan Martin
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In mathematical finance, Levy processes are widely used for their ability to model both continuous variation and abrupt, discontinuous jumps. These jumps are practically relevant, so reliable inference on the feature that controls jump frequencies and magnitudes, namely, the Levy density, is of critical importance. A specific obstacle to carrying out model-based (e.g., Bayesian) inference in such problems is that, for general Levy processes, the likelihood is intractable. To overcome this obstacle, here we adopt a Gibbs posterior framework that updates a prior distribution using a suitable loss function instead of a likelihood. We establish asymptotic posterior concentration rates for the proposed Gibbs posterior. In particular, in the most interesting and practically relevant case, we give conditions under which the Gibbs posterior concentrates at (nearly) the minimax optimal rate, adaptive to the unknown smoothness of the true Levy density.



rate research

Read More

Bayesian posterior distributions are widely used for inference, but their dependence on a statistical model creates some challenges. In particular, there may be lots of nuisance parameters that require prior distributions and posterior computations, plus a potentially serious risk of model misspecification bias. Gibbs posterior distributions, on the other hand, offer direct, principled, probabilistic inference on quantities of interest through a loss function, not a model-based likelihood. Here we provide simple sufficient conditions for establishing Gibbs posterior concentration rates when the loss function is of a sub-exponential type. We apply these general results in a range of practically relevant examples, including mean regression, quantile regression, and sparse high-dimensional classification. We also apply these techniques in an important problem in medical statistics, namely, estimation of a personalized minimum clinically important difference.
The Gini index is a popular inequality measure with many applications in social and economic studies. This paper studies semiparametric inference on the Gini indices of two semicontinuous populations. We characterize the distribution of each semicontinuous population by a mixture of a discrete point mass at zero and a continuous skewed positive component. A semiparametric density ratio model is then employed to link the positive components of the two distributions. We propose the maximum empirical likelihood estimators of the two Gini indices and their difference, and further investigate the asymptotic properties of the proposed estimators. The asymptotic results enable us to construct confidence intervals and perform hypothesis tests for the two Gini indices and their difference. We show that the proposed estimators are more efficient than the existing fully nonparametric estimators. The proposed estimators and the asymptotic results are also applicable to cases without excessive zero values. Simulation studies show the superiority of our proposed method over existing methods. Two real-data applications are presented using the proposed methods.
80 - Chunhao Cai , Min Zhang 2020
This paper is devoted to parameter estimation of the mixed fractional Ornstein-Uhlenbeck process with a drift. Large sample asymptotical properties of the Maximum Likelihood Estimator is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from cite{CK19}
Bayesian nonparametric hierarchical priors are highly effective in providing flexible models for latent data structures exhibiting sharing of information between and across groups. Most prominent is the Hierarchical Dirichlet Process (HDP), and its subsequent variants, which model latent clustering between and across groups. The HDP, may be viewed as a more flexible extension of Latent Dirichlet Allocation models (LDA), and has been applied to, for example, topic modelling, natural language processing, and datasets arising in health-care. We focus on analogous latent feature allocation models, where the data structures correspond to multisets or unbounded sparse matrices. The fundamental development in this regard is the Hierarchical Indian Buffet process (HIBP), which utilizes a hierarchy of Beta processes over J groups, where each group generates binary random matrices, reflecting within group sharing of features, according to beta-Bernoulli IBP priors. To encompass HI
103 - Meng Yuan , Pengfei Li , 2021
The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا