Do you want to publish a course? Click here

Semiparametric inference on Gini indices of two semicontinuous populations under density ratio models

91   0   0.0 ( 0 )
 Added by Pengfei Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Gini index is a popular inequality measure with many applications in social and economic studies. This paper studies semiparametric inference on the Gini indices of two semicontinuous populations. We characterize the distribution of each semicontinuous population by a mixture of a discrete point mass at zero and a continuous skewed positive component. A semiparametric density ratio model is then employed to link the positive components of the two distributions. We propose the maximum empirical likelihood estimators of the two Gini indices and their difference, and further investigate the asymptotic properties of the proposed estimators. The asymptotic results enable us to construct confidence intervals and perform hypothesis tests for the two Gini indices and their difference. We show that the proposed estimators are more efficient than the existing fully nonparametric estimators. The proposed estimators and the asymptotic results are also applicable to cases without excessive zero values. Simulation studies show the superiority of our proposed method over existing methods. Two real-data applications are presented using the proposed methods.



rate research

Read More

103 - Meng Yuan , Pengfei Li , 2021
The density ratio model (DRM) provides a flexible and useful platform for combining information from multiple sources. In this paper, we consider statistical inference under two-sample DRMs with additional parameters defined through and/or additional auxiliary information expressed as estimating equations. We examine the asymptotic properties of the maximum empirical likelihood estimators (MELEs) of the unknown parameters in the DRMs and/or defined through estimating equations, and establish the chi-square limiting distributions for the empirical likelihood ratio (ELR) statistics. We show that the asymptotic variance of the MELEs of the unknown parameters does not decrease if one estimating equation is dropped. Similar properties are obtained for inferences on the cumulative distribution function and quantiles of each of the populations involved. We also propose an ELR test for the validity and usefulness of the auxiliary information. Simulation studies show that correctly specified estimating equations for the auxiliary information result in more efficient estimators and shorter confidence intervals. Two real-data examples are used for illustrations.
In this paper, we propose new semiparametric procedures for making inference on linear functionals and their functions of two semicontinuous populations. The distribution of each population is usually characterized by a mixture of a discrete point mass at zero and a continuous skewed positive component, and hence such distribution is semicontinuous in the nature. To utilize the information from both populations, we model the positive components of the two mixture distributions via a semiparametric density ratio model. Under this model setup, we construct the maximum empirical likelihood estimators of the linear functionals and their functions, and establish the asymptotic normality of the proposed estimators. We show the proposed estimators of the linear functionals are more efficient than the fully nonparametric ones. The developed asymptotic results enable us to construct confidence regions and perform hypothesis tests for the linear functionals and their functions. We further apply these results to several important summary quantities such as the moments, the mean ratio, the coefficient of variation, and the generalized entropy class of inequality measures. Simulation studies demonstrate the advantages of our proposed semiparametric method over some existing methods. Two real data examples are provided for illustration.
The Youden index is a popular summary statistic for receiver operating characteristic curve. It gives the optimal cutoff point of a biomarker to distinguish the diseased and healthy individuals. In this paper, we propose to model the distributions of a biomarker for individuals in the healthy and diseased groups via a semiparametric density ratio model. Based on this model, we use the maximum empirical likelihood method to estimate the Youden index and the optimal cutoff point. We further establish the asymptotic normality of the proposed estimators and construct valid confidence intervals for the Youden index and the corresponding optimal cutoff point. The proposed method automatically covers both cases when there is no lower limit of detection (LLOD) and when there is a fixed and finite LLOD for the biomarker. Extensive simulation studies and a real data example are used to illustrate the effectiveness of the proposed method and its advantages over the existing methods.
Simultaneous, post-hoc inference is desirable in large-scale hypotheses testing as it allows for exploration of data while deciding on criteria for proclaiming discoveries. It was recently proved that all admissible post-hoc inference methods for the number of true discoveries must be based on closed testing. In this paper we investigate tractable and efficient closed testing with local tests of different properties, such as monotonicty, symmetry and separability, meaning that the test thresholds a monotonic or symmetric function or a function of sums of test scores for the individual hypotheses. This class includes well-known global null tests by Fisher, Stouffer and Ruschendorf, as well as newly proposed ones based on harmonic means and Cauchy combinations. Under monotonicity, we propose a new linear time statistic (coma) that quantifies the cost of multiplicity adjustments. If the tests are also symmetric and separable, we develop several fast (mostly linear-time) algorithms for post-hoc inference, making closed testing tractable. Paired with recent advances in global null tests based on generalized means, our work immediately instantiates a series of simultaneous inference methods that can handle many complex dependence structures and signal compositions. We provide guidance on choosing from these methods via theoretical investigation of the conservativeness and sensitivity for different local tests, as well as simulations that find analogous behavior for local tests and full closed testing. One result of independent interest is the following: if $P_1,dots,P_d$ are $p$-values from a multivariate Gaussian with arbitrary covariance, then their arithmetic average P satisfies $Pr(P leq t) leq t$ for $t leq frac{1}{2d}$.
111 - Zhe Wang , Ryan Martin 2021
In mathematical finance, Levy processes are widely used for their ability to model both continuous variation and abrupt, discontinuous jumps. These jumps are practically relevant, so reliable inference on the feature that controls jump frequencies and magnitudes, namely, the Levy density, is of critical importance. A specific obstacle to carrying out model-based (e.g., Bayesian) inference in such problems is that, for general Levy processes, the likelihood is intractable. To overcome this obstacle, here we adopt a Gibbs posterior framework that updates a prior distribution using a suitable loss function instead of a likelihood. We establish asymptotic posterior concentration rates for the proposed Gibbs posterior. In particular, in the most interesting and practically relevant case, we give conditions under which the Gibbs posterior concentrates at (nearly) the minimax optimal rate, adaptive to the unknown smoothness of the true Levy density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا