No Arabic abstract
Perfect single photons cannot be generated on demand due to their infinite tails. To quantify how close realizable states can be to some target single photon, we argue that there are two natural but incompatible ways to specify the target state. Either it can be expressed as a photon with a chosen, positive-frequency spectrum, or it can be described as an (unphysical) photon in a chosen, positive-time pulse. We determine upper and lower bounds for the maximum fidelity in both cases. The bounds are expressed as a function of the size of the target states tails, for negative time or negative frequency respectively.
We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes, as well as inter-convert them and change their frequency. We show that such quantum buffers optimally filter out temporal-spectral noise; producing identical single-photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots and can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability.
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multi-system interactions. For a Hamiltonian with $k$-system parameter-sensitive terms, the quantum limit scales as $1/N^k$ where $N$ is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter independent interaction among the systems and when adaptive measurements via parameter-independent coupling to ancillas are allowed.
We discuss the realization of quantum advantage in a system without quantum entanglement but with non-zero quantum discord. We propose an optical realization of symmetric two-qubit $X$-states with controllable anti-diagonal elements. This approach does not requires initially entangled states, and it can generate states that have quantum discord, with or without entanglement. We discuss how quantum advantage can be attained in the context of a two-qubit game. We show that when entanglement is not present, the maximum quantum advantage is 1/3 bit. A comparable quantum advantage, 0.311 bit, can be realized with a simplified transaction protocol involving one vs. the three unitary operations needed for the maximum advantage.
A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high efficiency periodically poled lithium niobate waveguides, low-loss laser inscribed circuits, and fast (>1 MHz) fibre coupled electro-optic switches. Hybrid interfacing different platforms is a promising route to exploiting the advantages of existing technology and has permitted the demonstration of the multiplexing of four identical sources of single photons to one output. Since this is an integrated technology, it provides scalability and can immediately leverage any improvements in transmission, detection and photon production efficiencies.
Photon pairs produced by parametric down-conversion or four-wave mixing can interfere with each other in multiport interferometers, or carry entanglement between distant nodes for use in entanglement swapping. This requires the photons be spectrally pure to ensure good interference, and have high heralding efficiency to know accurately the number of photons involved and to maintain high rates as the number of photons grows. Spectral filtering is often used to remove noise and define spectral properties. For heralded single photons high purity and heralding efficiency is possible by filtering the heralding arm, but when both photons in typical pair sources are filtered, we show that the heralding efficiency of one or both of the photons is strongly reduced even by ideal spectral filters with 100% transmission in the passband: any improvement in reduced-state spectral purity from filtering comes at the cost of lowered heralding efficiency. We consider the fidelity to a pure, lossless single photon, symmetrize it to include both photons of the pair, and show this quantity is intrinsically limited for sources with spectral correlation. We then provide a framework for this effect for benchmarking common photon pair sources, and present an experiment where we vary the photon filter bandwidths and measure the increase in purity and corresponding reduction in heralding efficiency.