Do you want to publish a course? Click here

Generalized Limits for Single-Parameter Quantum Estimation

195   0   0.0 ( 0 )
 Added by Sergio Boixo
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multi-system interactions. For a Hamiltonian with $k$-system parameter-sensitive terms, the quantum limit scales as $1/N^k$ where $N$ is the number of systems. These quantum limits remain valid when the Hamiltonian is augmented by any parameter independent interaction among the systems and when adaptive measurements via parameter-independent coupling to ancillas are allowed.



rate research

Read More

We present filtering equations for single shot parameter estimation using continuous quantum measurement. By embedding parameter estimation in the standard quantum filtering formalism, we derive the optimal Bayesian filter for cases when the parameter takes on a finite range of values. Leveraging recent convergence results [van Handel, arXiv:0709.2216 (2008)], we give a condition which determines the asymptotic convergence of the estimator. For cases when the parameter is continuous valued, we develop quantum particle filters as a practical computational method for quantum parameter estimation.
130 - Olivier Pinel , Pu Jian 2013
We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We apply the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.
123 - Han Xu , Junning Li , Liqiang Liu 2019
Measurement and estimation of parameters are essential for science and engineering, where one of the main quests is to find systematic schemes that can achieve high precision. While conventional schemes for quantum parameter estimation focus on the optimization of the probe states and measurements, it has been recently realized that control during the evolution can significantly improve the precision. The identification of optimal controls, however, is often computationally demanding, as typically the optimal controls depend on the value of the parameter which then needs to be re-calculated after the update of the estimation in each iteration. Here we show that reinforcement learning provides an efficient way to identify the controls that can be employed to improve the precision. We also demonstrate that reinforcement learning is highly generalizable, namely the neural network trained under one particular value of the parameter can work for different values within a broad range. These desired features make reinforcement learning an efficient alternative to conventional optimal quantum control methods.
We consider the implementation of two-qubit gates when the physical systems used to realize the qubits are weakly anharmonic and therefore possess additional quantum states in the accessible energy range. We analyze the effect of the additional quantum states on the maximum achievable speed for quantum gates in the qubit state space. By calculating the minimum gate time using optimal control theory, we find that higher energy levels can help make two-qubit gates significantly faster than the reference value based on simple qubits. This speedup is a result of the higher coupling strength between higher energy levels. We then analyze the situation where the pulse optimization algorithm avoids pulses that excite the higher levels. We find that in this case the presence of the additional states can lead to a significant reduction in the maximum achievable gate speed. We also compare the optimal control gate times with those obtained using the cross-resonance/selective-darkening gate protocol. We find that the latter, with some parameter optimization, can be used to achieve a relatively fast implementation of the CNOT gate. These results can help the search for optimized gate implementations in realistic quantum computing architectures, such as those based on superconducting qubits. They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of the higher levels to achieve fast quantum gates.
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا