Do you want to publish a course? Click here

A note on Banach spaces $E$ admitting a continuous map from $C_p(X)$ onto $E_{w}$

109   0   0.0 ( 0 )
 Added by Arkady Leiderman
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

$C_p(X)$ denotes the space of continuous real-valued functions on a Tychonoff space $X$ endowed with the topology of pointwise convergence. A Banach space $E$ equipped with the weak topology is denoted by $E_{w}$. It is unknown whether $C_p(K)$ and $C(L)_{w}$ can be homeomorphic for infinite compact spaces $K$ and $L$ cite{Krupski-1}, cite{Krupski-2}. In this paper we deal with a more general question: what are the Banach spaces $E$ which admit certain continuous surjective mappings $T: C_p(X) to E_{w}$ for an infinite Tychonoff space $X$? First, we prove that if $T$ is linear and sequentially continuous, then the Banach space $E$ must be finite-dimensional, thereby resolving an open problem posed in cite{Kakol-Leiderman}. Second, we show that if there exists a homeomorphism $T: C_p(X) to E_{w}$ for some infinite Tychonoff space $X$ and a Banach space $E$, then (a) $X$ is a countable union of compact sets $X_n, n in omega$, where at least one component $X_n$ is non-scattered; (b) $E$ necessarily contains an isomorphic copy of the Banach space $ell_{1}$.



rate research

Read More

74 - S. Ferrari 2019
Let $Bo(T,tau)$ be the Borel $sigma$-algebra generated by the topology $tau$ on $T$. In this paper we show that if $K$ is a Hausdorff compact space, then every subset of $K$ is a Borel set if, and only if, $$Bo(C^*(K),w^*)=Bo(C^*(K),|cdot|);$$ where $w^*$ denotes the weak-star topology and $|cdot|$ is the dual norm with respect to the sup-norm on the space of real-valued continuous functions $C(K)$. Furthermore we study the topological properties of the Hausdorff compact spaces $K$ such that every subset is a Borel set. In particular we show that, if the axiom of choice holds true, then $K$ is scattered.
In the sequel we establish the Banach Principle for semifinite JW-algebras without direct summand of type I sub 2, which extends the recent results of Chilin and Litvinov on the Banach Principle for semifinite von Neumann algebras to the case of JW-algebras.
As proved in [16], for a Tychonoff space $X$, a locally convex space $C_{p}(X)$ is distinguished if and only if $X$ is a $Delta$-space. If there exists a linear continuous surjective mapping $T:C_p(X) to C_p(Y)$ and $C_p(X)$ is distinguished, then $C_p(Y)$ also is distinguished [17]. Firstly, in this paper we explore the following question: Under which conditions the operator $T:C_p(X) to C_p(Y)$ above is open? Secondly, we devote a special attention to concrete distinguished spaces $C_p([1,alpha])$, where $alpha$ is a countable ordinal number. A complete characterization of all $Y$ which admit a linear continuous surjective mapping $T:C_p([1,alpha]) to C_p(Y)$ is given. We also observe that for every countable ordinal $alpha$ all closed linear subspaces of $C_p([1,alpha])$ are distinguished, thereby answering an open question posed in [17]. Using some properties of $Delta$-spaces we prove that a linear continuous surjection $T:C_p(X) to C_k(X)_w$, where $C_k(X)_w$ denotes the Banach space $C(X)$ endowed with its weak topology, does not exist for every infinite metrizable compact $C$-space $X$ (in particular, for every infinite compact $X subset mathbb{R}^n$).
We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiablity with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of `generator of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.
In this short note, we first consider some inequalities for comparison of some algebraic properties of two continuous algebra-multiplications on an arbitrary Banach space and then, as an application, we consider some very basic observations on the space of all continuous algebra-multiplications on a Banach space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا