Do you want to publish a course? Click here

A Note on Banach Principle for JW-algebras

151   0   0.0 ( 0 )
 Added by Alexander Katz
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In the sequel we establish the Banach Principle for semifinite JW-algebras without direct summand of type I sub 2, which extends the recent results of Chilin and Litvinov on the Banach Principle for semifinite von Neumann algebras to the case of JW-algebras.



rate research

Read More

215 - Ahmadreza Azimifard 2008
Associated to a nonzero homomorphism $varphi$ of a Banach algebra $A$, we regard special functionals, say $m_varphi$, on certain subspaces of $A^ast$ which provide equivalent statements to the existence of a bounded right approximate identity in the corresponding maximal ideal in $A$. For instance, applying a fixed point theorem yields an equivalent statement to the existence of a $m_varphi$ on $A^ast$; and, in addition we expatiate the case that if a functional $m_varphi$ is unique, then $m_varphi$ belongs to the topological center of the bidual algebra $A^{astast}$. An example of a function algebra, surprisingly, contradicts a conjecture that a Banach algebra $A$ is amenable if $A$ is $varphi$-amenable in every character $varphi$ and if functionals $m_varphi$ associated to the characters $varphi$ are uniformly bounded. Aforementioned are also elaborated on the direct sum of two given Banach algebras.
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which contains $mathcal{H}$ isometrically. In this paper, we derive dilation result for p-approximate Schauder frames for separable Banach spaces. Our result contains Naimark-Han-Larson dilation theorem as a particular case.
Let $G$ be a compact connected Lie group. The question of when a weighted Fourier algebra on $G$ is completely isomorphic to an operator algebra will be investigated in this paper. We will demonstrate that the dimension of the group plays an important role in the question. More precisely, we will get a positive answer to the question when we consider a polynomial type weight coming from a length function on $G$ with the order of growth strictly bigger than the half of the dimension of the group. The case of SU(n) will be examined, focusing more on the details including negative results. The proof for the positive directions depends on a non-commutative version of Littlewood multiplier theory, which we will develop in this paper, and the negative directions will be taken care of by restricting to a maximal torus.
This paper concerns the study of regular Fourier hypergroups through multipliers of their associated Fourier algebras. We establish hypergroup analogues of well-known characterizations of group amenability, introduce a notion of weak amenability for hypergroups, and show that every discrete commutative hypergroup is weakly amenable with constant 1. Using similar techniques, we provide a sufficient condition for amenability of hypergroup Fourier algebras, which, as an immediate application, answers one direction of a conjecture of Azimifard--Samei--Spronk [J. Funct. Anal. 256(5) 1544-1564, 2009] on the amenability of $ZL^1(G)$ for compact groups $G$. In the final section we consider Fourier algebras of hypergroups arising from compact quantum groups $mathbb{G}$, and in particular, establish a completely isometric isomorphism with the center of the quantum group algebra for compact $mathbb{G}$ of Kac type.
Let $G$ be a compact group. For $1leq pleqinfty$ we introduce a class of Banach function algebras $mathrm{A}^p(G)$ on $G$ which are the Fourier algebras in the case $p=1$, and for $p=2$ are certain algebras discovered in cite{forrestss1}. In the case $p ot=2$ we find that $mathrm{A}^p(G)cong mathrm{A}^p(H)$ if and only if $G$ and $H$ are isomorphic compact groups. These algebras admit natural operator space structures, and also weighte
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا