No Arabic abstract
The real part of optical conductivity, $text{Re}sigma(omega)$, of the Mott insulators has a large amount of information on how spin and charge degrees of freedom interact with each other. By using the time-dependent density-matrix renormalization group, we study $text{Re}sigma(omega)$ of the two-dimensional Hubbard model on a square lattice at half filling. We find an excitonic peak at the Mott-gap edge of $text{Re}sigma(omega)$ not only for the two-dimensional square lattice but also for two- and four-leg ladders. For the square lattice, however, we do not clearly find a gap between an excitonic peak and continuum band, which indicates that a bound state is not well-defined. The emergence of an excitonic peak in $text{Re}sigma(omega)$ implies the formation of a spin polaron. Examining the dependence of $text{Re}sigma(omega)$ on the on-site Coulomb interaction and next-nearest neighbor hoppings, we confirm that an excitonic peak is generated from a magnetic effect. Electron scattering due to an electron-phonon interaction is expected to easily suppress an excitonic peak since spectral width of an excitonic peak is very narrow. Introducing a large broadening in $text{Re}sigma(omega)$ by modeling the electron-phonon coupling present in La$_{2}$CuO$_{4}$ and Nd$_{2}$CuO$_{4}$, we obtain $text{Re}sigma(omega)$ comparable with experiments.
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correlator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled symmetric model with an emphasis on the spin and charge excitations. In the one-dimensional version of the model it is found that the spin gap is smaller than the charge gap below a certain value of $U_{cf}$ and the reversed inequality is valid for stronger $U_{cf}$. This behavior is also verified by the behavior of the spin and density correlation functions. We also perform a quantum information analysis of the model and determine the entanglement map of the f and conduction electrons. It is revealed that for a certain $U_{cf}$ the ground state is dominated by the configuration in which the conduction and f electrons are strongly entangled, and the ground state is almost a product state. For larger $U_{cf}$ the sites are occupied alternatingly dominantly by two f electrons or by two conduction electrons.
We study the elementary excitations of a model Hamiltonian for the $pi$-electrons in poly-diacetylene chains. In these materials, the bare band gap is only half the size of the observed single-particle gap and the binding energy of the exciton of 0.5 eV amounts to 20% of the single-particle gap. Therefore, exchange and correlations due to the long-range Coulomb interaction require a numerically exact treatment which we carry out using the density-matrix renormalization group (DMRG) method. Employing both the Hubbard--Ohno potential and the screened potential in one dimension, we reproduce the experimental results for the binding energy of the singlet exciton and its polarizability. Our results indicate that there are optically dark states below the singlet exciton, in agreement with experiment. In addition, we find a weakly bound second exciton with a binding energy of 0.1 eV. The energies in the triplet sector do not match the experimental data quantitatively, probably because we do not include polaronic relaxation effects.
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is shown that this local density of states is suppressed by the parallel polarization of the leads. In this case we are able to estimate the length of the Kondo cloud, and to relate its behavior to that suppression. Another important result of our study is that the tunnel magnetoresistance as a function of the quantum dot on-site energy is minimum and negative at the symmetric point.
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievable efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.