Do you want to publish a course? Click here

Density Matrix Renormalization Group in the Heisenberg Picture

142   0   0.0 ( 0 )
 Added by Michael Hartmann Dr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievable efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.



rate research

Read More

149 - H.-G. Luo , M.-P. Qin , 2010
We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of quantum chemistry or other many-fermion system with nonlocal interactions. For a water molecule, we find that the ground state energy obtained by the DMRG with only 61 optimized orbitals already reaches the accuracy of best quantum Monte Carlo calculation with 92 orbitals.
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correlator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
144 - Shaon Sahoo , Imke Schneider , 2019
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to uncover a whole field of new phenomena, but the theoretical and numerical understanding becomes extremely difficult. We now propose a promising numerical method by generalizing the density matrix renormalization group to a superposition of Fourier components of periodically driven many-body systems using Floquet theory. With this method we can study the full time-dependent quantum solution in a large parameter range for all evolution times, beyond the commonly used high-frequency approximations. Numerical results are presented for the isotropic Heisenberg antiferromagnetic spin-1/2 chain under both local(edge) and global driving for spin-spin correlations and temporal fluctuations. As the frequency is lowered, we demonstrate that more and more Fourier components become relevant and determine strong length- and frequency-dependent changes of the quantum correlations that cannot be described by effective static models.
The similarities between Hartree-Fock (HF) theory and the density-matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the non-redundant parametrization of the matrix product state (MPS) tangent space [J. Haegeman et al., Phys. Rev. Lett. 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e. an explicit non-redundant parametrization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.
159 - F. Lange , S. Ejima , T. Shirakawa 2020
We adapt the block-Lanczos density-matrix renormalization-group technique to study the spin transport in a spin chain coupled to two non-interacting fermionic leads. As an example, we consider leads described by two-dimensional tight-binding models on a square lattice. Although the simulations are carried out using a chain representation of the leads, observables in the original two-dimensional lattice can be calculated by reversing the block-Lanczos transformation. This is demonstrated for leads with Rashba spin-orbit coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا