Do you want to publish a course? Click here

Sulfur abundances in the Galactic bulge and disk

67   0   0.0 ( 0 )
 Added by Francesca Lucertini
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The measurement of $alpha$-elements abundances provides a powerful tool to put constraints on chemical evolution and star formation history of galaxies. The majority of studies on the $alpha$-element Sulfur (S) are focused on local stars, making S behavior in other environments an astronomical topic yet to be analyzed. Aims. The investigation of S in the Galactic bulge has only recently been considered for the first time. This work aims to improve our knowledge on S behavior in this component of the Milky Way. Methods. We present S abundances of 74 dwarf and sub-giant stars in the Galactic bulge, 21 and 30 F and G thick and thin disk stars. We performed local thermodynamic equilibrium analysis and applied corrections for non-LTE on high resolution and high signal-to-noise UVES spectra. S abundances were derived from multiplets 1, 6 and 8 in the metallicity range $-2<$[Fe/H]$<$0.6, by spectrosynthesis or line equivalent widths. Results. We confirm that S behaves like an $alpha$-element within the Galactic bulge. In the [S/Fe] versus [Fe/H] diagram, S presents a plateau at low metallicity followed by a decreasing of [S/Fe] with the increasing of [Fe/H], until reaching [S/Fe]$sim0$ at super-solar metallicity. We found that the Galactic bulge is S-rich with respect to both the thick and thin disks at $-1<$[Fe/H]$<0.3$, supporting a more rapid formation and chemical evolution of the Galactic bulge than the disk.



rate research

Read More

The chemical evolution of fluorine is investigated in a sample of Milky Way red giantstars that span a significant range in metallicity from [Fe/H] $sim$ -1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infraredspectra near $lambda$ 2.335 $mu$m. The red giants are members of the thin and thick disk / halo,with two stars being likely members of the outer disk Monoceros overdensity. At lowermetallicities, with [Fe/H]<-0.4 to -0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] $sim$ -0.3 to -0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] anddisplays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated hereby thick disk stars), a primary evolution of $^{19}$F with Fe, with a subsolar [F/Fe] valuethat roughly matches the observed plateau can be reproduced by a model incorporatingneutrino nucleosynthesis in the aftermath of the core collapse in supernovae of type II (SN II). A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapid rotating low-metallicity massive stars but this overproduces [F/Fe] atlow metallicity. The thick disk red giants in our sample span a large range of galactocentric distance (Rg $sim$ 6--13.7 kpc), yet display a $sim$constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 $pm$ 0.03 dex/kpc) of this elemental ratio over asignificant portion of the Galaxy having|Z|>300 pc away from the Galaxy mid-plane.
The Galactic Center Excess (GCE) is an extended gamma-ray source in the central region of the Galaxy found in Fermi Large Area Telescope (Fermi-LAT) data. One of the leading explanations for the GCE is an unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Due to differing star formation histories it is expected that the MSPs in the Galactic bulge are older and therefore dimmer than those in the Galactic disk. Additionally, correlations between the spectral parameters of the MSPs and the spin-down rate of the corresponding neutron stars have been observed. This implies that the bulge MSPs may be spectrally different from the disk MSPs. We perform detailed modelling of the MSPs from formation until observation. Although we confirm the correlations, we do not find they are sufficiently large to significantly differentiate the spectra of the bulge MSPs and disk MSPs when the uncertainties are accounted for. Our results demonstrate that the population of MSPs that can explain the gamma-ray signal from the resolved MSPs in the Galactic disk and the unresolved MSPs in the boxy bulge and nuclear bulge can consistently be described as arising from a common evolutionary trajectory for some subset of astrophysical sources common to all these different environments. We do not require that there is anything unusual about inner Galaxy MSPs to explain the GCE. Additionally, we use a more accurate geometry for the distribution of bulge MSPs and incorporate dispersion measure estimates of the MSPs distances. We find that the elongated boxy bulge morphology means that some the bulge MSPs are closer to us and so easier to resolve. We identify three resolved MSPs that have significant probabilities of belonging to the bulge population.
We have used the AAOMEGA spectrograph to obtain R $sim 1500$ spectra of 714 stars that are members of two red clumps in the Plaut Window Galactic bulge field $(l,b)=0^{circ},-8^{circ}$. We discern no difference between the clump populations based on radial velocities or abundances measured from the Mg$b$ index. The velocity dispersion has a strong trend with Mg$b$-index metallicity, in the sense of a declining velocity dispersion at higher metallicity. We also find a strong trend in mean radial velocity with abundance. Our red clump sample shows distinctly different kinematics for stars with [Fe/H] $<-1$, which may plausibly be attributable to a minority classical bulge or inner halo population. The transition between the two groups is smooth. The chemo-dynamical properties of our sample are reminiscent of those of the Milky Way globular cluster system. If correct, this argues for no bulge/halo dichotomy and a relatively rapid star formation history. Large surveys of the composition and kinematics of the bulge clump and red giant branch are needed to define further these trends.
312 - T. Bensby 2009
We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H=-0.8 to +0.4, and that they follow well-defined abundance trends, coincident with those of the Galactic thick disc.
[abridged] Beryllium is a pure product of cosmic ray spallation. This implies a relatively simple evolution in time of the beryllium abundance and suggests its use as a time-like observable. We study the evolution of Be in the early Galaxy and its dependence on kinematic and orbital parameters. We investigate the formation of the halo and the thick disk of the Galaxy and the use of Be as a cosmochronometer. Beryllium abundances are determined from high resolution, high signal to noise UVES spectra with spectrum synthesis in the largest sample of halo and thick disk stars analyzed to date. We present our observational results in various diagrams. 1) In a log(Be/H) vs [Fe/H] diagram we find a marginal statistical detection of a real scatter, above what expected from measurement errors, with a larger scatter among halo stars. The detection of the scatter is further supported by the existence of pairs of stars with identical atmospheric parameters and different Be abundances. 2) In an log(Be/H) vs [alpha/Fe] diagram, the halo stars separate into two components; one is consistent with predictions of evolutionary models, while the other has too high alpha and Be abundances and is chemically indistinguishable from thick disk stars. This suggests that the halo is not a single uniform population where a clear age-metallicity relation can be defined. 3) In diagrams of Rmin vs [alpha/Fe] and log(Be/H) the thick disk stars show a possible decrease of [alpha/Fe] with Rmin, whereas no dependence of Be with Rmin is seen. This anticorrelation suggests that the star formation rate was lower in the outer regions of the thick disc, pointing towards an inside-out formation. The lack of correlation for Be indicates that it is insensitive to the local conditions of star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا