Do you want to publish a course? Click here

Fluorine Abundances in the Galactic Disk

140   0   0.0 ( 0 )
 Added by Rafael Guer\\c{c}o
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The chemical evolution of fluorine is investigated in a sample of Milky Way red giantstars that span a significant range in metallicity from [Fe/H] $sim$ -1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-resolution infraredspectra near $lambda$ 2.335 $mu$m. The red giants are members of the thin and thick disk / halo,with two stars being likely members of the outer disk Monoceros overdensity. At lowermetallicities, with [Fe/H]<-0.4 to -0.5, the abundance of F varies as a primary element with respect to the Fe abundance, with a constant subsolar value of [F/Fe] $sim$ -0.3 to -0.4 dex. At larger metallicities, however, [F/Fe] increases rapidly with [Fe/H] anddisplays a near-secondary behavior with respect to Fe. Comparisons with various models of chemical evolution suggest that in the low-metallicity regime (dominated hereby thick disk stars), a primary evolution of $^{19}$F with Fe, with a subsolar [F/Fe] valuethat roughly matches the observed plateau can be reproduced by a model incorporatingneutrino nucleosynthesis in the aftermath of the core collapse in supernovae of type II (SN II). A primary behavior for [F/Fe] at low metallicity is also observed for a model including rapid rotating low-metallicity massive stars but this overproduces [F/Fe] atlow metallicity. The thick disk red giants in our sample span a large range of galactocentric distance (Rg $sim$ 6--13.7 kpc), yet display a $sim$constant value of [F/Fe], indicating a very flat gradient (with a slope of 0.02 $pm$ 0.03 dex/kpc) of this elemental ratio over asignificant portion of the Galaxy having|Z|>300 pc away from the Galaxy mid-plane.



rate research

Read More

119 - C. Abia , K. Cunha , S. Cristallo. 2010
An analysis of the fluorine abundance in Galactic AGB carbon stars (24 N-type, 5 SC-type and 5 J-type) is presented. This study uses the state- of-the-art carbon rich atmosphere models and improved atomic and molecular line lists in the 2.3 {mu}m region. F abundances significantly lower are obtained in comparison to previous study in the literature. The main reason of this difference is due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low- mass AGB stars, solving the long standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.
We present chemical abundances for the elements carbon, sodium, and fluorine in 15 red giants of the globular cluster M 4, as well as six red giants of the globular cluster $omega$ Centauri. The chemical abundances were calculated in LTE via spectral synthesis. The spectra analyzed are high-resolution spectra obtained in the near-infrared region around $lambda$2.3$mu$m with the Phoenix spectrograph on the 8.1m Gemini South Telescope, the IGRINS spectrograph on the McDonald Observatory 2.7m Telescope, and the CRIRES spectrograph on the ESO 8.2m Very Large Telescope. The results indicate a significant reduction in the fluorine abundances when compared to previous values from the literature for M 4 and $omega$ Centauri, due to a downward revision in the excitation potentials of the HF(1-0) R9 line used in the analysis. The fluorine abundances obtained for the M 4 red giants are found to be anti-correlated with those of Na, following the typical pattern of abundance variations seen in globular clusters between distinct stellar populations. In M 4, as the Na abundance increases by $sim$+0.4 dex, the F abundance decreases by $sim$-0.2 dex. A comparison with abundance predictions from two sets of stellar evolution models finds that the models predict somewhat less F depletion ($sim$-0.1 dex) for the same increase of +0.4 dex in Na.
113 - Yoichi Takeda 2021
Spectroscopic determinations of Rubidium abundances were conducted by applying the spectrum fitting method to the Rb I 7800 line for an extensive sample of ~500 late-type dwarfs as well as giants (including Hyades cluster stars) belonging to the galactic disk population, with an aim of establishing the behaviour of [Rb/Fe] ratio for disk stars in the metallicity range of -0.6<[Fe/H]<+0.3. An inspection of the resulting Rb abundances for Hyades dwarfs revealed that they show a systematic Teff-dependent trend at >5500K; this means that the results for mid-G to F stars (including the Sun) are not reliable (i.e., more or less overestimated), which might be due to some imperfect treatment of surface convection in classical model atmospheres. As such, it was decided to confine only to late-G and K stars at Teff<5500K and adopt the solar-system (meteoritic) value as the reference Rb abundance. The [Rb/Fe] vs.[Fe/H] relations derived for field dwarfs and giants turned out to be consistent with each other, showing a gradual increase of [Rb/Fe] with a decrease in [Fe/H] (with d[Rb/Fe]/d[Fe/H] gradient of ~-0.4 around the solar metallicity), which is favourably compared with the theoretical prediction of chemical evolution models. Accordingly, this study could not confirm the anomalous behaviour of [Rb/Fe] ratio (tending to be subsolar but steeply increasing toward supersolar metallicity) recently reported for M dwarf stars of -0.3<[Fe/H]<+0.3.
116 - Katia Cunha 2010
When compared to lithium and beryllium, the absence of boron lines in the optical results in a relatively small data set of boron abundances measured in Galactic stars to date. In this paper we discuss boron abundances published in the literature and focus on the evolution of boron in the Galaxy as measured from pristine boron abundances in cool stars as well as early-type stars in the Galactic disk. The trend of B with Fe obtained from cool F-G dwarfs in the disk is found to have a slope of 0.87 +/- 0.08 (in a log-log plot). This slope is similar to the slope of B with Fe found for the metal poor halo stars and there seems to be a smooth connection between the halo and disk in the chemical evolution of boron. The disk trend of boron with oxygen has a steeper slope of ~1.5. This slope suggests an intermediate behavior between primary and secondary production of boron with respect to oxygen. The slope derived for oxygen is consistent with the slope obtained for Fe provided that [O/Fe] increases as [Fe/H] decreases, as observed in the disk.
247 - Yoichi Takeda 2020
An extensive study on the potassium abundances of late-type stars was carried out by applying the non-LTE spectrum-fitting analysis to the K I resonance line at 7698.96A to a large sample of 160 FGK dwarfs and 328 late-G /early-K giants (including 89 giants in the Kepler field with seismologically known ages) belonging to the disk population (-1 < [Fe/H] < 0.5), which may provide important observational constraint on the nucleosynthesis history of K in the galactic disk. Special attention was paid to clarifying the observed behaviors of [K/Fe] in terms of [Fe/H] along with stellar age, and to checking whether giants and dwarfs yield consistent results with each other. The following results were obtained. (1) A slightly increasing tendency of [K/Fe] with a decrease in [Fe/H] (d[K/Fe]/d[Fe/H] ~ -0.1 to -0.15; a shallower slope than reported by previous studies) was confirmed for FGK dwarfs, though thick-disk stars tend to show larger [K/Fe] deviating from this gradient. (2) Almost similar characteristics was observed also for apparently bright field giants locating in the solar neighborhood (such as like dwarfs). (3) However, the [K/Fe] vs. [Fe/H] relation for more distant {it Kepler} giants shows larger scatter and is systematically higher (by <~0.1dex) than that of dwarfs, implying that chemical evolution of K is rather diversified depending on the position in the Galaxy. (4) Regarding the age-dependence, a marginal trend of increasing [K/Fe] with age is recognized for dwarfs, while any systematic tendency is not observed for Kepler giants. These consequences may suggest that evolution of [K/Fe] with time in the galactic disk does exist but proceeded more gradually than previously thought, and its condition is appreciably location-dependent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا