Do you want to publish a course? Click here

Symplectic Boundary Conditions and Cohomology

140   0   0.0 ( 0 )
 Added by Li-Sheng Tseng
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We introduce new boundary conditions for differential forms on symplectic manifolds with boundary. These boundary conditions, dependent on the symplectic structure, allows us to write down elliptic boundary value problems for both second-order and fourth-order symplectic Laplacians and establish Hodge theories for the cohomologies of primitive forms on manifolds with boundary. We further use these boundary conditions to define a relative version of the primitive cohomologies and to relate primitive cohomologies with Lefschetz maps on manifolds with boundary. As we show, these cohomologies of primitive forms can distinguish certain Kahler structures of Kahler manifolds with boundary.



rate research

Read More

206 - Li-Sheng Tseng , Lihan Wang 2014
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on differential forms and use them to establish Hodge theory by proving various form decomposition and also isomorphisms between the symplectic cohomologies and the spaces of harmonic fields. These novel boundary conditions can be applied in certain cases to study relative symplectic cohomologies and Lefschetz maps between relative de Rham cohomologies. As an application, our results are used to solve boundary value problems of differential forms.
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive forms and therefore lead directly to the construction of primitive cohomologies on symplectic manifolds. Using these operators, we introduce new primitive cohomologies that are analogous to the Dolbeault cohomology in the complex theory. Interestingly, the finiteness of these primitive cohomologies follows directly from an elliptic complex. We calculate the known primitive cohomologies on a nilmanifold and show that their dimensions can vary depending on the class of the symplectic form.
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differential elliptic complexes. Algebraically, we show that the filtered cohomologies give a two-sided resolution of Lefschetz maps, and thereby, they are directly related to the kernels and cokernels of the Lefschetz maps. We also introduce a novel, non-associative product operation on differential forms for symplectic manifolds. This product generates an A-infinity algebra structure on forms that underlies the filtered cohomologies and gives them a ring structure. As an application, we demonstrate how the ring structure of the filtered cohomologies can distinguish different symplectic four-manifolds in the context of a circle times a fibered three-manifold.
406 - Yuhan Sun 2021
We present some computations of relative symplectic cohomology, with the help of an index bounded contact form. For a Liouville domain with an index bounded boundary, we construct a spectral sequence which starts from its classical symplectic cohomology and converges to its relative symplectic cohomology inside a Calabi-Yau manifold.
402 - Claude Viterbo 2014
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is the sequence $H(kx,y,q,p)$ where the limit is of the type ${bar H}(y,q,p)$ and thus yields an effective Hamiltonian. We give here the proof of the convergence, and the first properties of the homogenization operator, and give some immediate consequences for solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that the function $bar H$ coincides with Mathers $alpha$ function which gives a new proof of its symplectic invariance proved by P. Bernard. A previous version of this paper relied on the former On the capacity of Lagrangians in $T^*T^n$ which has been withdrawn. The present version of Symplectic Homogenization does not rely on it anymore.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا