Do you want to publish a course? Click here

O(n)-invariant Riemannian metrics on SPD matrices

107   0   0.0 ( 0 )
 Added by Yann Thanwerdas
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.



rate research

Read More

We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rigidity theorems for Lie groupoids, which unify, simplify and improve similar results for classic geometries. Then we establish the Morita invariance for our metrics, introduce a notion for metrics on stacks, and use them to construct stacky tubular neighborhoods and to prove a stacky Ehresmann theorem.
Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on development of artificial intelligence (AI) and other branches of computer science. A natural idea is to describe the geometry of $SPDleft(nright)$ as a Riemannian manifold endowed with the Wasserstein metric. In this paper, by involving the fiber bundle, we obtain explicit expressions for some locally geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures. Furthermore, we discuss the behaviour of geodesics and prove that the manifold is globally geodesic convex with non-negative curvatures but no conjugate pair and cut locus. According to arithmetic estimates, we find curvatures can be controlled by the minimal eigenvalue.
195 - Weiyong He , Jun Li 2018
The scalar curvature equation for rotation invariant Kahler metrics on $mathbb{C}^n backslash {0}$ is reduced to a system of ODEs of order 2. By solving the ODEs, we obtain complete lists of rotation invariant zero or positive csck on $mathbb{C}^n backslash {0}$ in lower dimensions. We also prove that there does not exist negative csck on $mathbb{C}^n backslash {0}$ for $n=2,3$.
192 - F. Hiai , D. Petz 2008
The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function $phi$ in the form $K_D^phi(H,K)=sum_{i,j}phi(lambda_i,lambda_j)^{-1} Tr P_iHP_jK$ when $sum_ilambda_iP_i$ is the spectral decomposition of the foot point $D$ and the Hermitian matrices $H,K$ are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping $Dmapsto G(D)$ is a kernel metric as well. Several Riemannian geometries of the literature are particular cases, for example, the Fisher-Rao metric for multivariate Gaussian distributions and the quantum Fisher information. In the paper the case $phi(x,y)=M(x,y)^theta$ is mostly studied when $M(x,y)$ is a mean of the positive numbers $x$ and $y$. There are results about the geodesic curves and geodesic distances. The geometric mean, the logarithmic mean and the root mean are important cases.
95 - P. Gilkey , M. Itoh , 2015
We give a general Lie-theoretic construction for anti-invariant almost Hermitian Riemannian submersions, anti-invariant quaternion Riemannian submersions, anti-invariant para-Hermitian Riemannian submersions, anti-invariant para-quaternion Riemannian submersions, and anti-invariant octonian Riemannian submersions. This yields many compact Einstein examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا